
volume 3 issue 4 2005 www.mxdj.com

COMBINED: A N E W B E G I N N I N G

DREAMWEAVER
Best Practices with CSS

FLASH
ProgressBar Component

FIREWORKS
Masking with Bitmaps

COLDFUSION
10 Issues Identifed & Discussed

DIRECTOR
Collision Detection

P. 8 3.4

THE LEADING MAGAZINE
FOR MACROMEDIA MX
DEVELOPERS & DESIGNERS

“ We share a common vision for the

future of content and Internet applications

across multiple operating systems,

devices and media. ” – Kevin Lynch
 Chief Software Architect

Macromedia

MM_FL_Video_CFDJ_live.fh11 2/15/05 4:37 PM Page 1

Composite

C M Y CM MY CY CMY K

We figured it was about time that
 web video stopped looking like web video.

This is a scene from one of the world’s best websites, with video playing

next to traditional web animation. The look of full-screen video, without

ugly web players or pop-ups.

To tour the site—and see the future of video—visit:

macromedia.com/go/video5

Copyright © 2005 Macromedia, Inc. and its licensors. All rights reserved. Macromedia, Flash, and the Macromedia logo are registered trademarks of Macromedia, Inc.
in the United States and/or other countries. Other marks are the properties of their respective owners.

10 Issues Identified &
Discussed
Web services–enabling a
ColdFusion application
by steven rubenstein

april 2005

New Beginnings
Welcome to the future
by charles e. brown

New Beginnings

by charles e. brown

Business guru Tom Peters once wrote “we

need to embrace change; to welcome it; to

transplant ourselves periodically.” Through

change, we grow and avoid complacency or

staleness. With change, we start on the

proverbial Spring cleaning and make way

for the new and exciting.

This month, most certainly, Macromedia

has forced us to change…and for that we

should be grateful. With the merger of

Macromedia and Adobe we are standing on

the edge of the next generation of web

design and development…welcome to the

future.

While I know I am going to get a ton of

nasty e-mail about this, as I already have

had after several blogs I published at

mxdj.sys-con.com, we have to face one

very real reality: by the end of this year, or

somewhere thereabouts, Macromedia as

we know it will be gone. The new name is

not going to be Macromedia-Adobe or

some variation of that. The new name is

going to be Adobe. Within the next year, all

the familiar interfaces (and how we use our

tools) will be gone. The products we are all

comfortable with will be incorporated into

the Adobe family of products.

Skinning the V2
ProgressBar Component
Getting started with skinning
by colin moock

7 Bigness Sure
Ain't Badness
by jeremy geelan

20 The MX
Blogosphere
Taking a stroll around
the MX World
by mxdj news desk

22 Best Practices with CSS in
Dreamweaver MX
Cascading Style Sheets (CSS) in
changing the website design process
by rachel andrew

34 Uncovering Fireworks Masks:
Masking with Bitmaps
We look at vector objects
by kim cavanaugh

4 • 20054 • MXDJ.COM

46 How I Rolled My Own Collision
Detection
A helpful addition to your toolbox
by andrew m. phelps

38

26

8 16 Macromedia Hits
the Headlines
Blogging during
acquisition
by mxdj news desk

50 vanguard
Step into My Office
by agencynet

n the world or architecture, as

many of the designers among MX

Developer’s Journal’s readership are

well aware, there’s a wonderfully erudite

theory, with a equally wonderfully dumb

name: Bigness.

 The Dutch architect Rem Koolhaas

wrote, just six years before the turn of

the millennium, in 1994, “Bigness is a

theoretical domain at this fin de siècle. In

a landscape of disarray, disassembly, dis-

sociation, disclamation, the attraction of

Bigness is its potential to reconstruct the

Whole, resurrect the Real, reinvent the

collective, reclaim maximum possibility.”

 Ignoring the impossibly grand

Koolhaasian rhetoric of Bigness as “the

one architecture that could survive, even

exploit, the now-global condition of the

tabula rasa,” (not for nothing was Koolhaas

dubbed a “rhetorical architect” as well as a

creator of real physical buildings!) it seems

pretty clear that the Theory of Bigness can

also throw light on why two companies

like Macromedia and Adobe might opt so

enthusiastically to coalesce.

 In the world of commercial software,

bigness allows what Koolhaas called

“Manhattanism without Manhattan”

– put another way, like a skyscraper-block

returned in a single building, a mega-

company can facilitate a great variety of

programs, and won’t be constrained by any

grid. Two plus two can, and will, make five.

 In this issue, as editor-in-chief

Charles E. Brown makes clear in his “New

Beginnings” feature, MXDJ celebrates the

potential, for designers and developers,

in the new amalgamation, as and when it

is all ratified and approved in due course.

 In terms of bigness, a company with

$1.67 billion per annum and one with

$422 million is no out-and-out bronto-

saurus. IBM’s annual revenues, after all,

are nearly $97 billion and Microsoft’s are

almost $39 billion. But the particular

Adobe-Macromedia combo is definitely

a very nifty Tyrannosaurus Rex, with long

and slender legs for an animal of its size.

Combined with $2 billion joint revenues,

it’s a formidable new software dinosaur,

and achieving such a size will defi-

nitely allows many things to happen that

would not have been possible before.

 As Charles points out in his article, one

of the most energetic areas of develop-

ment in the Adobe-Macromedia future

is certain to be software aimed at the

mobile market. So we will doubtless be

appointing a Mobile Editor soon to the

magazine. And we would love to hear, too,

from the kinds of people who in the past

enjoyed Adobe Magazine, which – entirely

appropriately – moved to the Web in 1999

and flourishes in Australia/New Zealand,

South East Asia, and India. The address for

article submissions: http://mxdj.sys-con.

com/main/proposal.htm -- or send an e-

mail to mxdj@sys-con.com.

 Of all the various comments about the

developments in April, I like these two the

best. First, I liked the way that Adobe CEO

Stephen Elop said: “Both Macromedia and

Adobe are passionate about creating and

enabling great experiences across a wide

range of devices and operating systems.”

Then I liked what Macromedia’s Kevin

Lynch said: “We will continue to be busier

than ever here as we build our next gen-

eration tools, servers and client technol-

ogy, and over time, the combination will

enable a complete, cross media, rich client

technology platform.”

 One hears many (frankly) empty

utterances before, during, and after

the kind of business transaction that is

now in train. But both these consum-

mate i-technology professionals seem

to have latched on to something almost

tangible, indisputable, and that is that

the Adobe-Macromedia-in-combination

story is more interesting that the story of

either Adobe or Macromedia would be

solo. Both are forward-looking and both

demonstrably recognize that passion

pays, that great software will always be in

demand – as will great developers.

 If you want to continue keeping track

of this powerful force for innovation

around cutting-edge platforms for deliv-

ering content and applications, then stay

100% tuned. I know that we all involved

in the magazine will! These are truly

interesting times.

Group Publisher Jeremy Geelan
Art Director Louis F. Cuffari

EDITORIAL BOARD
Editor-in-Chief
Charles E. Brown charles@sys-con.com
Dreamweaver Editor
Dave McFarland
Flash Editor
Brian Eubanks
Fireworks Editor
Joyce J. Evans
FreeHand Editor
Ron Rockwell
Louis F. Cuffari
Director Editor
Andrew Phelps
Captivate Editor
Tom Green

INTERNATIONAL ADVISORY BOARD
Jens Christian Brynildsen Norway,
David Hurrows UK, Joshua Davis USA,
Jon Gay USA, Craig Goodman USA,
Phillip Kerman USA, Danny Mavromatis USA,
Colin Moock Canada, Jesse Nieminen USA,
Gary Rosenzweig USA, John Tidwell USA

EDITORIAL
Editor
Nancy Valentine, 201 802-3044
nancy@sys-con.com

Associate Editor
 Seta Papazian, 201 802-3052
seta@sys-con.com

Technical Editors
Jesse Warden • Sarge Sargent

To submit a proposal for an article, go to http://
grids.sys-con.com/proposal.

Subscriptions
E-mail: subscribe@sys-con.com
U.S. Toll Free: 888 303-5282
International: 201 802-3012
Fax: 201 782-9600
Cover Price U.S. $5.99
U.S. $29.99 (12 issues/1 year)
Canada/Mexico: $49.99/year
International: $59.99/year
Credit Card, U.S. Banks or Money Orders
Back Issues: $12/each

Editorial and Advertising Offices
Postmaster: Send all address changes to:
SYS-CON Media
135 Chestnut Ridge Rd.
Montvale, NJ 07645

Worldwide Newsstand Distribution
Curtis Circulation Company, New Milford, NJ

List Rental Information
Kevin Collopy: 845 731-2684,
kevin.collopy@edithroman.com,
Frank Cipolla: 845 731-3832, frank.
cipolla@epostdirect.com

Promotional Reprints
Dorothy Gil, 201 802-3024
dorothy@sys-con.com

Copyright © 2005
by SYS-CON Publications, Inc. All rights
reserved. No part of this publication may be
reproduced or transmitted in any form or by
any means, electronic or mechanical, includ-
ing photocopy or any information storage and
retrieval system, without written permission.

MX Developer’s Journal (ISSN#1546-2242)
is published monthly (12 times a year) by
SYS-CON Publications, Inc., 135 Chestnut
Ridge Road, Montvale, NJ 07645.

SYS-CON Media and SYS-CON Publications,
Inc., reserve the right to revise, republish, and
authorize its readers to use the articles submit-
ted for publication. MX and MX-based marks
are trademarks or registered trademarks of
Macromedia, in the United States and other
countries. SYS-CON Publications, Inc., is inde-
pendent of Macromedia. All brand and product
names used on these pages are trade names,
service marks or trademarks of their respective
companies.

fro
m

 th
e

 g
ro

u
p

 p
u

b
lish

e
r

i
by jeremy geelan

Bigness Sure
Ain’t Badness...

Jeremy Geelan is group

publisher of SYS-CON

Media, and is responsible

for the new titles and tech-

nology portals for the firm.

He regularly represents

SYS-CON at conferences

and trade shows, speaking

to technology audiences

both in North America and

overseas.

jeremy@sys-con.com

4 • 2005 MXDJ.COM • 7

New Beginnings

by charles e. brown

Business guru Tom Peters once wrote “we

need to embrace change; to welcome it; to

transplant ourselves periodically.” Through

change, we grow and avoid complacency or

staleness. With change, we start on the

proverbial Spring cleaning and make way

for the new and exciting.

This month, most certainly, Macromedia

has forced us to change…and for that we

should be grateful. With the merger of

Macromedia and Adobe we are standing on

the edge of the next generation of web

design and development…welcome to the

future.

While I know I am going to get a ton of

nasty e-mail about this, as I already have

had after several blogs I published at

mxdj.sys-con.com, we have to face one

very real reality: by the end of this year, or

somewhere thereabouts, Macromedia as

we know it will be gone. The new name is

not going to be Macromedia-Adobe or

some variation of that. The new name is

going to be Adobe. Within the next year, all

the familiar interfaces (and how we use our

tools) will be gone. The products we are all

comfortable with will be incorporated into

the Adobe family of products.

8 • MXDJ.COM 4 • 20058 • MXDJ.COM 4 • 2005

New Beginnings

by charles e. brown

Business guru Tom Peters once wrote “we

need to embrace change; to welcome it; to

transplant ourselves periodically.” Through

change, we grow and avoid complacency or

staleness. With change, we start on the

proverbial Spring cleaning and make way

for the new and exciting.

This month, most certainly, Macromedia

has forced us to change…and for that we

should be grateful. With the merger of

Macromedia and Adobe we are standing on

the edge of the next generation of web

design and development…welcome to the

future.

While I know I am going to get a ton of

nasty e-mail about this, as I already have

had after several blogs I published at

mxdj.sys-con.com, we have to face one

very real reality: by the end of this year, or

somewhere thereabouts, Macromedia as

we know it will be gone. The new name is

not going to be Macromedia-Adobe or

some variation of that. The new name is

going to be Adobe. Within the next year, all

the familiar interfaces (and how we use our

tools) will be gone. The products we are all

comfortable with will be incorporated into

the Adobe family of products.

4 • 2005 MXDJ.COM • 9

This Is Not Armageddon
 If we listen to the many postings I

have seen on a variety of chat boards,

Armageddon has arrived. Absolutely

nothing is further from the truth. Why is

this necessarily bad? Both Macromedia

and Adobe are well-established and

very reputable names in our industry.

Photoshop has been a standard for

many years and the PDF format (which is

owned by Adobe and created with their

package Acrobat) is growing in many

unique ways. On the Macromedia side,

Flash and Dreamweaver are indisputable

industry standards. Put them together

and you have potential like you have

never seen before. However, it grows

from there.

 This week, Adobe just released its

next generation of products called CS2

(Creative Suite 2). This release introduces

a radical new Adobe Creative Suite com-

ponent: Adobe Bridge. It acts as a hub

for productivity, imagery and creativity,

providing multi-view file browsing and

smooth cross-product integration across

Adobe Creative Suite 2 software. It also

provides access to Adobe Stock Photos,

a new stock photography service that

offers one-stop shopping for high-quality,

royalty-free images for layout and design.

With advanced mobile authoring, for

standards such as SVG-t, Adobe Creative

Suite 2 accelerates design and publishing

workflows – for print, the Web and the

latest generation of handheld devices.

Bridge to the Future?
 To quote Shantanu Narayen, presi-

dent and chief operating officer at Adobe:

“Through their work in design, advertis-

ing and publishing our customers change

the way the world looks everyday. Our

goal is to develop a technology platform

that the creative community can rely

on and build upon. With Creative Suite

2 we’ve delivered the essential tools

designers need to efficiently realize and

create their best work: online, in print or

for the latest handheld device.”

 Adobe Bridge is a visual file browser

that lets designers easily browse, orga-

nize, and process design assets within

Adobe Creative Suite 2 software compo-

nents. Designers can preview multi-page

Adobe PDF files, drag and drop from

floating Compact Mode windows, process

images with built-in Camera Raw 3.0, edit

and search for Adobe XMP metadata,

and track assets managed in Version

Cue CS2. Simplifying the purchase and

management of stock imagery, Adobe

Stock Photos is a single resource that

brings together, at one convenient loca-

tion, more than 230,000 images from

some of the world’s leading stock pho-

tography providers, including: Photodisc

by Getty Images; Comstock Images by

Jupitermedia; Digital Vision; imageshop

royalty free by zefaimages; and amana.

 Version Cue CS2, a powerful file-ver-

sion manager and collaboration tool,

helps users visually preview, track and

access historical and alternate versions of

files in Adobe Creative Suite 2 projects.

Workgroup users can easily share their

work, and can now initiate a Web-based

collaborative review of PDF project

files. Using a single dialog box in Adobe

Bridge, designers can synchronize color

settings for Photoshop CS2, Illustrator

CS2, InDesign CS2 and GoLive CS2, avoid-

ing painful after-the-fact color adjust-

ments. New global export presets allow

for consistent creation of Adobe PDF

documents across components of Adobe

Creative Suite to save time and avoid

costly errors when projects go to print.

Presets are stored in a single location and

can be customized for specific workflows.

A Top Priority: The Mobile
Market
 Have absolutely no doubt: Adobe

is looking toward the mobile market.

Focusing on that market will be Adobe’s

GoLive software.

 Once again, quoting Shantanu

Narayen: “GoLive is now at the leading

edge of cross-media content authoring,

eliminating the gap between what can

be delivered on the Web and what can be

authored for mobile devices. The future

of the Web is being driven by millions of

consumers who are demanding graphi-

cally-rich Internet services on their hand-

sets and GoLive will be at the center of

this content revolution.”

 At the heart of GoLive will be a defec-

tor Object Oriented way of building

websites. GoLive CS2 unlocks the full

potential of CSS with new and enhanced

tools that enable designers to work visu-

ally while automatically generating lean,

efficient CSS code. Designers can now

drag and drop pre-built, extensible CSS

block objects onto Web pages to quickly

construct classic liquid CSS designs that

previously took considerable time to

produce. The new Layer and Grid Text Box

tools enable designers to interactively

place and size CSS-based layers and text

boxes, while the enhanced Layout Grid,

Layout Text Box, and Layer objects all pro-

“We can now take the
incredible power of

Macromedia’s
outstanding collection

of tools and combine
them with the

innovative tools
of Adobe.”

10 • MXDJ.COM 4 • 2005

duce CSS by default.

 Adobe GoLive CS2 delivers compre-

hensive mobile authoring tools based on

open standards to support mobile layout

(CSS, XHTML), multimedia and interactivi-

ty (SVG, SVG-t), and video (3GPP, MPEG-4)

for mobile devices. The new SVG-t Editor

supports both SVG-t 1.1 and 1.2 and

enables designers to use SVG-t files cre-

ated in Adobe Illustrator CS2 and other

applications, quickly select SVG elements

and their source code and then add a

wide range of interactivity.

 GoLive also delivers a robust MMS

templating and editing environment and

flexible device emulation for preview-

ing content for Sony Ericsson and Nokia

devices and is easily extensible to sup-

port other manufacturer handsets. The

Live Rendering engine includes a new

Small Screen Rendering option for pre-

viewing how content developed for the

Web will appear on mobile devices.

 Repurposing print content for the

Web is easier than ever with GoLive CS2.

Designers can now package print assets

in InDesign CS2; open, preview, and

optimize that content in GoLive CS2; and

then export automatically as XHTML Web

pages. This jump-starts Web designs,

which can then be finessed and site-man-

aged in GoLive CS2. In addition, Smart

Object support is extended to include

easy creation of smart favorite icons, used

in URL addresses and Favorites menus to

brand websites.

 Let’s now turn to the core of the

Adobe family: Photoshop.

“Stunning Images” With
CS2 Software
 Photoshop CS2 integrates a new set

of intuitive tools, including an enhanced

Spot Healing Brush, for handling com-

mon photographic problems such as

blemishes, red-eye, noise, blurring and

lens distortion. Smart Objects allow users

to scale and transform images and vector

illustrations without losing image quality

– as well as create linked duplicates of

embedded graphics – so that a single edit

updates across multiple iterations.

Responding to requests from film, broad-

cast and video professionals, Photoshop

CS2 now allows non-destructive editing

and the creation and editing of 32-Bit

High Dynamic Range (HDR) images, ideal

for 3D rendering and advanced composit-

ing. FireWire Previews can also be viewed

on a television monitor through a new

direct export feature.

 Photoshop CS2 users will test the

limits of creativity with new tools like

Vanishing Point and Image Warping.

Vanishing Point cuts tedious graphic

and photo retouching tasks by allowing

users to clone, paint and transform image

objects while retaining visual perspective.

Reinventing workflows such as product

packaging development, Image Warping

makes it easy to fold, stretch, pull, twist

and wrap an image into shape by select-

ing an on-demand preset or dragging

custom control points.

 “Photoshop CS2 pushes the envelope

with powerful features and simplified

workflows that provide photographers

and creative professionals the freedom

to deliver stunning images,” said Bryan

Lamkin, senior vice president of Digital

Imaging and Digital Video Products at

Adobe. “In light of the four million digital

SLRs expected to ship this year, more

photographers than ever will be making

Photoshop CS2 their digital darkroom of

choice.”

 With Photoshop CS2 software, find-

fi
g

u
re

 1

12 • MXDJ.COM 4 • 2005

ing and working with digital photos and

images has never been easier. The popu-

lar File Browser has been upgraded to

Adobe Bridge, which functions as a hub

for productivity, imagery and creativity,

providing multi-view file browsing and

smooth cross-product integration across

Adobe Creative Suite 2 software. Adobe

Bridge also provides access to Adobe

Stock Photos, a new stock photography

service that offers users one-stop shop-

ping – across five elite stock image pro-

viders – to deliver high-quality, royalty-

free images for layout and design (see

separate press release).

 The new Camera Raw 3.0 workflow

allows settings for multiple raw files to

be simultaneously modified. In addition

batch processing of raw files, to JPEG,

TIFF, DNG or PSD formats, can now be

done in the background without launch-

ing the main Photoshop executable.

Integrated, non-destructive cropping and

straightening controls allow raw files to

be easily prepared for final output.

 Simplifying Photoshop’s rich interface,

task-based menu presets make it easier to

find the features needed for specific work.

Users can create their own custom pre-

sets, highlighting favorite items and now

have the ability to define event-based

scripts and time-saving operations that

execute automatically when triggered by

actions, such as saving or printing a file.

Multiple Layer Controls speeds editing,

enabling the simultaneous selection and

manipulation of numerous layers within a

file.

 Adobe Creative Suite 2 delivers a

tightly integrated set of professional

design tools, enabling superb image-edit-

ing, illustration, page layout, Web and

mobile authoring, and Adobe PDF work-

flow support. Offering the full, new ver-

sions of the world’s leading design tools

– Adobe Photoshop CS2, Illustrator CS2,

InDesign CS2, GoLive CS2, and Acrobat

7.0 Professional – Adobe Creative Suite

2 gives designers such powerful new

features as enhanced support for digital

images captured in raw format; a new

paradigm in vector graphics creation;

significantly more productive page layout

tools; and the capability to design, devel-

op, and deploy mobile sites that conform

to open industry standards. And because

the components of Adobe Creative Suite

2 are so tightly knit and cohesive, creative

fi
g

u
re

 3
fi

g
u

re
 2

14 • MXDJ.COM 4 • 2005

ideas flow onto the page uncompromised and

undiminished, just as designers envision them.

Key Role for Macromedia’s Tools
 While I will grant that much of Adobe’s

efforts have been focused on print, this is where

Macromedia will come into play: we can now take

the incredible power of Macromedia’s outstand-

ing collection of tools and combine them with the

innovative tools of Adobe. Adobe has not been

strong with server technology: Dreamweaver is

needed to help harness much of this technol-

ogy on the server. E-Learning is developing into

a huge industry, and Macromedia is poised with

Captivate, Authorware, and Breeze. And, of course,

it goes without saying that Flash has virtually

taken over this industry with most websites incor-

porating it in one form or another. Neither Adobe,

nor for that matter anyone else, comes even close

with a competitive product (although, Microsoft

has a product it is planning on introducing this fall

and which, many believe, may have been part of

the motivation behind this merger).

 Two of the features I found especially interest-

ing in Photoshop CS2 were the Vanishing Point

and Image Warp.

 With Vanishing Point (see Figure 1) you can

effortlessly edit and transform with tools that

automatically adjust to the visual perspective of

your images with the revolutionary, plane-based

Vanishing Point. Define your perspective planes

visually with the perspective grid tool, then paint,

clone and drag objects around corners and into

the distance. Cutting literally hours off precision

design and photo retouching tasks, one use and

you’ll wonder how you ever lived without it.

 Image Warp (see Figures 2 & 3) allows you

to expand your creative options with live image

warping directly on the canvas. Start with one

of the comprehensive set of included presets, or

customize your warp by simply dragging control

points on the warp grid. Image Warp makes short

work of wrapping graphics around objects, and

when coupled with the new Smart Objects fea-

tures, warps stay fully re-editable.

 Getting the idea? This is not the end, but only

the beginning.

 If I may, let me give you a bit of what some

may call a “doom and gloom” prognostication: Just

as we get use to these great new tools, they will

probably change yet again. All at once, this is what

makes our industry so exciting yet, at times, so

frustrating.

Conclusion:
A Firm Eye on the Future
 As I am writing this article, I am overlooking

the EPCOT theme park located in the Walt Disney

World complex in Orlando, Florida. EPCOT stands

for Experimental Prototype City of Tomorrow

(although, some people feel it stands for Every

Person Comes Out Tired). Disney always had a very

firm eye on the future and embraced change and

development. If we want to stay in this business,

we must do the same.

• • •

 Over the next few months, we will be bringing

more in-depth analysis of the Adobe products.

Let’s face it, we will now need to work with them.

 Let’s embrace this New Beginning.

Charles E. Brown is the editor-in-chief of MX

Developer’s Journal. He is the coauthor of

Fireworks MX, Zero to Hero and the auther of

Beginning Dreamweaver MX. He also contributed

to The Macromedia Studio MX Bible. Charles is a

senior trainer for FMC on the MX product family.

charles@sys-con.com

SYS-CON MEDIA
President & CEO
Fuat Kircaali, 201 802-3001
fuat@sys-con.com
Vice President, Business Development
Grisha Davida, 201 802-3004
grisha@sys-con.com
Group Publisher
Jeremy Geelan, 201 802-3040
jeremy@sys-con.com

ADVERTISING
Senior Vice President, Sales & Marketing
Carmen Gonzalez, 201 802-3021
carmen@sys-con.com
Vice President, Sales & Marketing
Miles Silverman , 201 802-3029
miles@sys-con.com
Advertising Sales Director
Robyn Forma, 201 802-3022
robyn@sys-con.com
Advertising Sales & Marketing Manager
Dennis Leavey, 201 802-3023
dennis@sys-con.com
Advertising Sales Manager
Megan Mussa, 201 802-3023
megan@sys-con.com
Associate Sales Managers
Dorothy Gil, 201 802-3024
dorothy@sys-con.com
Kim Hughes, 201 802-3025
kim@sys-con.com

PRODUCTION
Production Consultant
Jim Morgan, 201 802-3033
jim@sys-con.com
Lead Designer
Louis F. Cuffari, 201 802-3035
louis@sys-con.com
Art Director
Alex Botero, 201 802-3031
alex@sys-con.com
Associate Art Director
Tami Beatty, 201 802-3038
tami@sys-con.com
Assistant Art Directors
Andrea Boden, 201 802-3034
andrea@sys-con.com
Video Production
Frank Moricco, 201 802-3036
frank@sys-con.com

SYS-CON.COM
Consultant, Information Systems
Robert Diamond, 201 802-3051
robert@sys-con.com
Web Designers
Stephen Kilmurray, 201 802-3053
stephen@sys-con.com
Percy Yip, 201 802-3054
percy@sys-con.com

ACCOUNTING
Financial Analyst
Joan LaRose, 201 802-3081
joan@sys-con.com
Accounts Payable
Betty White, 201 802-3002
betty@sys-con.com
Accounts Receivable
Gail Naples, 201 802-3062
gailn@sys-con.com

EVENTS
President, SYS-CON Events
Grisha Davida, 201 802-3004
grisha@sys-con.com
National Sales Manager
Jim Hanchrow, 201 802-3066
jimh@sys-con.com

CUSTOMER RELATIONS
Circulation Service Coordinators
Edna Earle Russell, 201 802-3081
edna@sys-con.com
Linda Lipton, 201 802-3012
linda@sys-con.com
JDJ Store Manager
Brundila Staropoli, 201 802-3000
bruni@sys-con.com

“EPCOT founder Walt
Disney always had a very
firm eye on the future and
embraced change and
development. If we want
to stay in this business, we
must do the same”

4 • 2005 MXDJ.COM • 15

t is wholly unprecedented in the

(brief) history of blogging: with a

$3.4 billion business deal in play,

the Macromedia bloggers nonethe-

less remained determined to continue

their commitment to avoiding a “legal

blackout” interfering unduly with the

Macromedia commitment to communi-

cate more directly and more often with

the developers on whose its success as a

company depends.

 Macromedia’s John Dowdell was in

the forefront, “erring on the side of cau-

tion” by “going dark” on the morning of

the announcement, but taking care as a

courtesy that his blog didn’t merely fall

silent all day, which would have possibly

been misinterpreted. “Sorry I didn’t post

today,” he eventually wrote, “I’ve been

waiting on getting approval for a post

– rare, and in this case, apparently low in

the priority stack. I hope that this single

post here is okay for apologizing for not

posting at all today.”

 Three days later he followed up in

much more detail. “In five years some

lawschool textbook will likely cite this

‘blogging during acquisition’ situation,”

he wrote on April 21. “Anyway, we’re still

feeling our way here,” he continued, “and

I’d prefer to go slowly, erring on the side

of caution. People reading this can specu-

late about what an Adobe/Macromedia

combination would be able to accom-

plish, but us staffers cannot, at least not

without risking massive complications.

I’d feel more comfortable if such specu-

lations occurred elsewhere, not on my

weblog.”

 Dowdell pointed out early on that

since Weblogs “reach more people, and

remain easily searchable, and are docu-

ments which can (with comments) actu-

ally have multiple authors,” the potential

complications they could introduce – if

allowed complete free rein – are consid-

erable.

 Macromedia’s product manager for

MX, Mike Chambers, on the other hand,

took the role of ‘Blogger-in-Chief’ and

rose to the occasion admirably. In an April

18 blog entitled, succinctly, “Macromedia

+ Adobe,” Chambers weighed in:

 “Well, as you probably have probably

heard by now, Macromedia and Adobe

announced this morning that our com-

panies are combining. If you are like me,

then I am sure there are a ton of ques-

tions going through your head. We have

put up a mini site (http://www.adobe.

com/aboutadobe/invrelations/adobean-

dmacromedia.html) with more informa-

tion, but I wanted to make a quick post

to put some more context around what is

happening.”

 “First, Macromedia and Adobe have

announced that we are combining into

a single company,” Chambers continued.

“However, and this is a very important

point, this has not occurred yet, and will

not occur until approved by stockholders

and government regulators.”

 “This is an important point, because

during this period, there will be some

legal constraints on what I (and other

Macromedia employees) can and can’t

speak about in public (see the end of the

post for an example). So, please keep

this in mind if you ask a question and are

referred to the FAQ or web site.”

 “We are still working on 8ball,

Maelstrom and everything else we have

been working on”

 Chambers’ blog continued: “So,

with that in mind, I can’t actually go

into too many details. Day to day work

at Macromedia will continue on as it

has been. We are still working on 8ball,

Maelstrom and everything else we have

been working on. We are still planning to

ship sometime in the second half of this

year. We are still committed to Flash as a

development platform (probably more

than ever now). We are still committed to

our server products, such as ColdFusion

(7 has been incredibly successful) and

Flex.”

 “How will this affect the Macromedia

culture?” Chambers asked rhetorically.

“We have worked hard over the past

couple of years to get closer to you, com-

municate more directly and more often.

We have tons of employees participat-

ing in the community, whether it be

through mailing lists, forums, weblogs

or contributing code. I think that it is this

culture of openness and participation

that has made us so successful over the

past couple of years. This is not going to

change. Indeed, I think that this culture

of openness and participation is one of

the reasons that Adobe was interested in

bringing our companies closer together.”

 “We are going to work hard to make

sure that everything moves forward

smoothly, but there are sure to be some

bumps along the way. However, I am con-

fident that as long as we continue to be

open, and communicate clearly we will

all come out of this in a much stronger

position. We will able to compete more

effectively, innovate more, and be more

responsive than we would have been

able to do on our own.”

 Chambers then, “because this post

contains some forward looking state-

ments about the combination of our

companies, and because we are now in

a regulatory period,” included a slew of

newsviews

Macromedia Hits the Headlines

“Blogging During Acquisition” becomes hottest issue of the month
by mxdj news desk

i

16 • MXDJ.COM 4 • 2005

legalese longer than the actual post!

 But the “net net” was clear:

Macromedia was living up to its promise

to be as transparent as possible. Three

cheers for Mike Chambers!

Quote Unquote:
Early Reactions
Mike Chambers, April 18, 2005

Macromedia MX Product Manager

and ‘Blogger-in-Chief’

 “How do I feel about this personally?

Well, of course, I was a little surprised at

first. But, now that I have had some time

to think about it for a while, I am actually

quite excited.

 I strongly believe in the potential

of Flash as a cross-platform solution for

deploying rich content and applications

(I can’t stress the cross-platform part of

that enough). Together, the combined

company will have the resources on our

own to make the platform successful on

a larger scale. So, personally, I am excited

about this because, after the combination

closes, Flash as a platform will be driven

by a much, much larger company (com-

bined we would be over $2 billion a year

in revenue), with a lot more resources at

its disposal. I think it makes it much more

likely that Flash will play a significant role

as the next generation application / con-

tent platform (one that is ubiquitous and

cross platform).

 I think it makes things very interest-

ing...”

Jeremy Allaire, April 18, 2005

Former CTO of Macromedia, Now

Founder and President of Brightcove

 “Macromedia lost the enterprise

publishing race to Adobe, and Adobe lost

it with the Web publishing community.

So the deal combines the best of both

worlds. It gives Macromedia a huge sales

channel, especially on the enterprise side.

This will probably make the channels as

strong as say Microsoft has.”

Kevin Lynch, April 18, 2005

Chief Software Architect,

Macromedia

 “This has been a move that’s been

a long time coming as the relationship

between our companies has been grow-

ing far beyond our early clashes during

the frenetic times of the internet bubble.

 ”I’ve gotten to know Bruce Chizen,

Shantanu Narayen and others at Adobe

over the past few years (I’ve known some

other folks at Adobe for even a longer

time) and we all share a common vision

for the future of content and internet

applications across multiple operating

systems, devices and media. There have

been times when this led us to conflict as

we worked in similar areas, but today we

find ourselves having worked on different

parts of this vision and are in a very com-

plementary position with our technology

and our customers.

 Together we will offer an incredible

set of products.

 Many creative professionals and web

developers already use our products

together, and we will be able to provide

an even more efficient authoring and

development environment to create,

manage and deliver information. There

are also significant opportunities to help

digital video creators not only produce

great work but also deliver it seamlessly

over the internet.

 In the rapidly growing mobile devices

area, we are able to provide a very strong

set of products for developers, content

providers, and operators to create and

deliver rich mobile content.

 For enterprise developers, we can

provide a wider set of development tools

and solutions that help connect people

and business systems, providing an effec-

tive, highly productive user experience.

For mainstream business users, we pro-

vide a more complete environment for

dynamic, engaging collaboration over the

internet that enables both on-line and

off-line work.

 We will continue to be busier than

ever here as we build our next generation

tools, servers and client technology, and

over time, the combination will enable a

complete, cross media, rich client tech-

nology platform.

 I’m looking forward to seeing both

familiar and new faces at Adobe, and

to working together to build excellent

software to help millions of people bet-

ter communicate and interact, enabling

great experiences.”

Mike Chambers, Macromedia

April 18, 2005

Macromedia + Adobe

 Well, as you probably have probably

heard by now, Macromedia and Adobe

announced this morning that our com-

panies are combining. If you are like me,

then I am sure there are a ton of ques-

tions going through your head. We have

put up a mini site with more information,

but I wanted to make a quick post to put

some more context around what is hap-

pening.

 First, Macromedia and Adobe have

announced that we are combining into

a single company. However, and this

is a very important point, this has not

occurred yet, and will not occur until

approved by stockholders and govern-

ment regulators. This is an important

point, because during this period, there

will be some legal constraints on what

I (and other Macromedia employees)

can and can’t speak about in public (see

the end of the post for an example). So,

please keep this in mind if you ask a

question and are referred to the FAQ or

web site.

 So, with that in mind, I can’t actu-

ally go into too many details. Day to day

work at Macromedia will continue on as

it has been. We are still working on 8ball,

Maelstrom and everything else we have

been working on. We are still planning to

ship sometime in the second half of this

year. We are still committed to Flash as a

development platform (probably more

than ever now). We are still committed to

our server products, such as ColdFusion

(7 has been incredibly successful) and

Flex.

 How will this affect the Macromedia

culture? We have worked hard over the

past couple of years to get closer to

you, communicate more directly and

more often. We have tons of employ-

ees participating in the community,

whether it be through mailing lists,

forums, weblogs or contributing code. I

think that it is this culture of openness

and participation that has made us so

successful over the past couple of years.

This is not going to change. Indeed, I

think that this culture of openness and

participation is one of the reasons that

Adobe was interested in bringing our

companies closer together.

 We are going to work hard to make

sure that everything moves forward

smoothly, but there are sure to be some

bumps along the way. However, I am con-

fident that as long as we continue to be

open, and communicate clearly we will

4 • 2005 MXDJ.COM • 17

all come out of this in a much stronger

position. We will able to compete more

effectively, innovate more, and be more

responsive than we would have been

able to do on our own.

Factpoint 1: The April 18
Statement by Adobe
Adobe to Acquire Macromedia

 Combined Company to Deliver

Industry-Defining Technology Platform

for Rich, Interactive Content

 SAN JOSE, Calif. - April 18, 2005 - Adobe

Systems Incorporated (Nasdaq: ADBE)

today announced a definitive agreement

to acquire Macromedia (Nasdaq: MACR) in

an all-stock transaction valued at approxi-

mately $3.4 billion.

 The combination of Adobe and

Macromedia will provide customers

a more powerful set of solutions for

creating, managing and delivering com-

pelling content and experiences across

multiple operating systems, devices and

media. Together, the two companies

will meet a wider set of customer needs

and have a significantly greater oppor-

tunity to grow into new markets, par-

ticularly in the mobile and enterprise

segments.

 “Customers are calling for integrated

software solutions that enable them

to create, manage and deliver a wide

range of compelling content and appli-

cations – from documents and images

to audio and video,” said Bruce Chizen,

chief executive officer of Adobe. “By

combining our powerful development,

authoring and collaboration software

– along with the complementary func-

tionality of PDF and Flash – Adobe has

the opportunity to bring this vision to

life with an industry-defining technol-

ogy platform.”

 Under the terms of the agreement,

which has been approved by both

boards of directors, Macromedia stock-

holders will receive, at a fixed exchange

ratio, 0.69 shares of Adobe common stock

for every share of Macromedia common

stock in a tax-free exchange. Based on

Adobe’s and Macromedia’s closing prices

on Friday, April 15, 2005, this represents a

price of $41.86 per share of Macromedia

common stock. Upon the close of the

transaction, Macromedia stockholders

will own approximately 18 percent of the

combined company on a pro forma basis.

 In the combined company, Chizen will

continue as chief executive officer and

Shantanu Narayen will remain president

and chief operating officer. Stephen

Elop, president and chief executive offi-

cer of Macromedia, will join Adobe as

president of worldwide field operations.

Murray Demo will remain executive vice

president and chief financial officer. Dr.

John Warnock and Dr. Charles Geschke

will remain as co-chairmen of the Board

of Directors of the combined com-

pany and Rob Burgess, chairman of the

Macromedia Board of Directors, will join

the Adobe Board.

 “Both Macromedia and Adobe are

passionate about creating and enabling

great experiences across a wide range of

devices and operating systems,” said Elop.

“Our combined teams will be a powerful

force for innovation around cutting-edge

platforms for delivering content and

applications.”

Integration

 The two companies are developing

integration plans that build on the cul-

tural similarities and the best business

and product development practices from

each company. The companies will make

additional details and information about

the acquisition available at http://www.

adobe.com/aboutadobe/invrelations/

adobeandmacromedia.html.

 “While we anticipate the integration

team will identify opportunities for cost

savings by the time the acquisition closes,

the primary motivation for the two com-

panies’ joining is to continue to expand

and grow our business into new markets,”

said Chizen.

 The acquisition, which is expected to

close in Fall 2005, is subject to customary

closing conditions, including approval

by the stockholders of both companies

and regulatory approvals. The transaction

will be accounted for under purchase

accounting rules.

 Due to the absence at this time of

estimates of the acquisition-related

restructuring costs and the allocation of

the purchase price between goodwill,

in-process R&D, other intangibles and

equity-based compensation expenses

related to SFAS 123R, Adobe is currently

unable to provide GAAP estimates on

future earnings.

 The transaction is currently expected

to be break-even to slightly accretive to

earnings in the first twelve months after

closing on a non-GAAP basis. The com-

pany’s target of break even-to-slightly

accretive to earnings on a non-GAAP

basis assumes no adverse impact from

the loss of deferred revenue in the first

twelve months following the close due to

purchase accounting.

Factpoint 2: Adobe Systems
Incorporated
• Market: graphics, video and business

document software

• Headquarters: San Jose, Calif.

• Founded: 1982

• Chief executive officer: Bruce Chizen

• Stock: adbe (nasdaq)

• Employees: approximately 4,000

• Revenue: $1.67 Billion in fiscal 2004

• Customers: creative professionals,

enterprises and governments, photo

and video hobbyists

• Market presence:

- more than a half-billion copies of

adobe reader have been distributed

worldwide.

- the world’s top 10 pc manufacturers

ship their systems with adobe pdf

technology pre-installed.

- more than 700 thousand copies of

adobe creative suite shipped in its

first year (October 2004).

Factpoint 3:
Macromedia, Inc.
• Market: web and application

development software

• Headquarters: San Francisco, Calif.

• Founded: 1992

• Chief executive officer: Stephen Elop

• Stock: macr (nasdaq)

• Employees: approximately 1,500

• Revenue: $422 million in cy 2004

• Customers: web and application devel-

opers, business users, mobile ecosys-

tem

• Market presence:

- Macromedia Flash Player is installed

on more than 98% of Internet-con-

nected desktops and more than half

a billion users have the Flash client

installed.

- More than 25 million Flash-enabled

devices have shipped.

- Macromedia products are used by

90 percent of Fortune 1000 compa-

nies.

18 • MXDJ.COM 4 • 2005

f one of the true signs of a vibrant

developer community is an active

blogosphere surrounding a technol-

ogy, then the MX suite of technolo-

gies certainly passes that test with flying

colors. In case you’re not yet actively

blogging yourself, MXDJ brings you here

a comprehensive selection from some of

the best known blogger-commentators

(and some of the not so well-known too),

by way of whetting your appetite.

 Don’t forget that you can blog yourself

now, too, at the MXDJ site – just follow the

link from http://mxdj.sys-con.com.

Blog Topic: The Acquisition
Macromedia and Adobe Not Sure If

it’s a Good Thing?

By The Blogster (http://williajay.linux-

world.com/read/1214759.htm)

 “Being a user of Macromedia products

for the last 15 years, I find the Adobe

purchase to be a much better fit for

Adobe than Macromedia. Macromedia

has created such a wonderful web pres-

ence; Adobe has tried but hasn’t come

close. There is also the issue of support. I

haven’t had an issue with Macromedia’s

support, they have always been very

patient and worked through my prob-

lems.

 Over on Slashdot, they’re talking

about this: “According to John Dvorak the

reasoning behind Adobe’s recent (and to

many, surprising) purchase of Macromedia

for $3.4 billion is that Adobe was afraid

Microsoft was going to do it first.”

Blog Topic: Flash
Class Deserialization: OpenAMF &

Flashcom

By Jesse Randall Warden

(http://www.jessewarden.com/)

 Had a hell of a time debugging

some OpenAMF calls yesterday. Turns

out, when Flash deserializes your class,

it basically takes a vanilla object, puts

properties on it and assigns their val-

ues, and then points that instance’s

__proto__ property to the prototype

of the class you registered via Object.

registerClass. The downside to this is

it doesn’t run your setter functions on

any getter/setters you have set on the

class. Naturally, your getters fail imme-

diately because they look to a private

equivalent variable which is different,

and when you call the setter... it’s really

a function.

 How Flash manages to keep “first-

Name” the public property and “first-

Name” the public getter function in the

same namespace is beyond me, but

regardless, I’ve tested in Flashcom last

night, and the same thing happens there,

too, so it appears to be how Flash deseri-

alizes your class.

 The way we, “solved it” as my man-

ager says, or “worked around it” as I

claim, is emulating, EXACTLY the Java

class equivalents. So, you have private

properties in the Java model class,

like:

private String firstName;

And same on the Flash side:

private var firstName:String;

 And instead of getter/setter functions

in Flash, you just use the get/set function

methology:

public function getFirstName():String

{

return firstName;

}

public function setFirstName(val:

String):Void

{

firstName = val;

}

 I really don’t like this at all, and per-

sonally feel that there should either be

an event letting you know when the

class is deserialized (Flashcom does

this for server-side ActionScript classes

via the onInitialize event) so you can

then run the getter/setters yourself,

OR Flash should just intrinsically know

there are getter/setters in place, and

set the private variables accordingly.

This gets sticky though because you’re

now having the Flash Player run code

on your classes. Thus, I vote for the

first.

Blog Topic: Flash
ProgressBar “Gotcha”

By Colin Moock from “moockblog”

(http://moock.org/blog/)

 “I just noticed this undocumented

limitation with the v2 ProgressBar com-

ponent, and I figured it was worth shar-

ing...

 When a ProgressBar’s mode prop-

erty is set to “event” (the default)

it won’t broadcast complete() or

progress() events. if you want to reg-

ister for events from a ProgressBar

make sure its mode is set to “polled”

or “manual”. If you are using the

ProgressBar in “event” mode then you

should register for events with the

ProgressBar’s source rather than with

the ProgressBar itself.

 Have fun preloading...”

blogs

The MX Blogosphere

 This month’s edition of our new regular feature –
taking a stroll around the MX world

by mxdj news desk

i

20 • MXDJ.COM 4 • 2005

he increasing use of Cascading

Style Sheets (CSS) is changing the

website design process. To meet

the rising needs of CSS-conscious

designers, Macromedia Dreamweaver MX

includes many new and improved CSS-

related features. With these new features,

you can plan for future updates, build

websites that are more compatible with

World Wide Web Consortium (W3C) stan-

dards, and comply with new accessibility

laws. This article discusses best practices

when using CSS and highlights specific

CSS features in Dreamweaver MX.

 Style sheets are, in general terms, a

collection of formatting rules that control

the appearance of content in a web page.

You can implement CSS on your pages

three different ways:

• Inline: a one-time style placed in the

code

• Embedded: a style sheet that controls

the elements on one web page

• External: one external style sheet that

can control the appearance of many

web pages

 Many websites, in fact, use combi-

nations of these different kinds of CSS

styles.

 An important consideration in the

use of CSS styles is the fact that different

browsers (and different versions of the

same browser) render CSS styles differ-

ently. In addition to variations in web

browser compatibility, you should be

aware that many other types of browsers

exist, such as aural browsers, TV-based

browsers, handheld devices such as Palm

Pilots, and TTY (teletypewriter).

 If you want to learn more about the

basics of CSS before proceeding on with

a “best practices” analysis, review some of

the materials listed in the More Resources

section at the end of this article.

 What does CSS “Best Practices” Mean?

Most technologies have accepted stan-

dards, and CSS styles have their own set

of standards. Although non-standard

CSS practices (including its lack of use)

exist on the Internet, there are many

benefits to adhering to the defined

standards.

 In general, developers should aim

to “separate content from presentation”

as much as possible on all web pages.

Proper separation is recommended in

order to:

1. Increase the longevity of your website

 Using non-standard practices may

seem more convenient at the moment,

but a future version of a browser

may not be so tolerant of shortcuts.

Individually changing all of your web

pages in the future could be very time-

consuming and defeat one of the main

purposes of using CSS styles in the first

place.

2. Make your website more accessible to all

users and devices

 Government legislation in some

areas has required websites to be

accessible to users with disabilities.

Browsing devices that assist people

with disabilities, such as an aural

browser, are especially dependent on

the best use of CSS styles.

3. Allow you to update and maintain your

website with ease

 Properly implemented, CSS styles

allow you to make changes to your web-

site on one page and see those changes

take effect globally across your entire

website instantaneously.

style sheets

Best Practices with CSS in
Dreamweaver MX

Cascading Style Sheets (CSS) is changing the website design process
by rachel andrew

t

fi
g

u
re

 1

fi
g

u
re

 2

22 • MXDJ.COM 4 • 2005

Best Practices with CSS in
Dreamweaver MX
 One of the first decisions you’ll have

to make involves selecting which kind of

CSS style to use. Below is an analysis of

the different kinds of CSS styles with best

practices in mind.

Inline CSS

 Simply put, you should avoid inline

CSS styles. Apart from any other consid-

erations, using inline CSS means that you

are not taking advantage of the true pow-

ers of CSS-and it means that you are not

separating content from presentation.

 Dreamweaver MX uses inline CSS

mark-up primarily for positioning page

elements (these positioned items are

called “Layers” in the Dreamweaver MX

UI), or to enable a specific DHTML effect

which requires an inline style to alter an

object’s properties with JavaScript.

Embedded CSS

 Embedded CSS is less than optimal

because it only affects the style of the page

on which it is written. During an update

process, inconsistency across your site will

result if any pages are missed. Additionally,

your style information-which exists on each

and every page of your site-has to be down-

loaded every time a user views a page.

External CSS Files

 External CSS files should always be

your first choice. By creating a CSS file

that contains all of the style information

for your website, you can:

1. Maintain a consistent look across all

pages that link to the style sheet.

2. Easily update the look of all pages by

changing the values in one file.

3. Make your pages much smaller and

quicker to download, because all of the

style information has been removed to

one file.

 Other CSS best practices will be

mentioned as specific CSS-related fea-

tures are outlined below.

Creating a CSS style in
Dreamweaver MX
 When you create a new style in

Dreamweaver MX, you have two choices

in the New CSS Style dialog box: New

Style Sheet File or This Document Only

(see Figure 1). Choosing New Style Sheet

File will start the process for creating an

external style sheet. This option requires

you to name and save the CSS file before

actually creating a style. The other option,

This Document Only, will embed the style

directly into the head of your document.

 You can also select an existing style

sheet in the New Style dialog box to edit

or add more definitions to it.

Should You Link or Import
Your External Style Sheet?
 After creating your external style

sheet, you will need to attach it to each

page (or attach it to a template). To do

this, click the Attach Style Sheet button

on the CSS Panel. The Link External Style

Sheet dialog box will appear, allowing

you to browse to the name of your style

sheet. After you’ve located the style

sheet, you can choose to link or import

the external style sheet (see Figure 2).

 Linking to the style sheet is the most

common approach. Selecting the “link”

option will attach your external style

sheet to your page by adding the follow-

ing markup:

<link href=”mystyles.css”

rel=”stylesheet” type=”text/css” />

 All CSS-enabled browsers support the

linking option, and this method should

be followed if you need older browsers

(such as Netscape 4.x) to “see” the styles.

 If you choose the “import” option, the

style sheet will be attached with the fol-

lowing mark-up:

<style type=”text/css”>

<!--

@import url(“mystyles.css”);

-->

/style>

 The import method of attaching

a style sheet is not recognised by the

older, version 4, browsers. However, it

can come in handy. Developers often

use the import method in order to

include CSS styles designed for new

browsers while also linking to an

external style sheet to include styles

for Netscape 4.x. This technique is

explained in more detail below.

One Strategy to Cover
Newer and Older Browsers
 You can use both the link and import

methods to attach two different style

fi
g

u
re

 3

“Developers should aim to “separate
content from presentation” as much
as possible on all web pages”

4 • 2005 MXDJ.COM • 23

sheets that, between the two of them,

cover multiple browsers-including

Netscape 4.x. One style sheet only con-

tains values supported in the older brows-

ers; and one style sheet contains addi-

tional or different properties for the newer

browsers with more robust CSS support.

 To accomplish this, you first attach the

style sheet for the older browsers using

the link method. Then, select import to

attach the style sheet for newer browsers.

The resulting code will look similar to this:

<link href=”oldbrowsers.css”

rel=”stylesheet” type=”text/css” />

<style type=”text/css”>

<!--

@import url(“newbrowsers.css”);

-->

</style>

 The version 4 browsers will com-

pletely ignore the imported style sheet

and render the page according to the val-

ues in the linked one, leaving you free to

fully use the capabilities of CSS for those

browsers that support it. This approach

eliminates the possibility of causing an

unreadable page in older browsers.

The CSS Property Inspector
 You can now easily switch into

CSS mode within the Dreamweaver

MX Property inspector. By default, the

Property inspector displays the original

font tags in HTML mode. To switch the

Property inspector into CSS mode, click

the CSS/HTML toggle (the small “A” next

to the font pop-up menu). Instead of the

font tag list, you will be presented with

the list of CSS styles currently available

(see Figure 3).

 You can always toggle back into HTML

mode to work on a non-CSS based website.

Ready-Made Style Sheets
 A particularly exciting new CSS-

related feature in Dreamweaver MX is the

inclusion of ready-made CSS style sheets.

New users to CSS can begin by experi-

menting with one of these ready-made

style sheets.

 To get started, choose File > New. In

the New Document dialog box (under

category) select CSS style sheets. A whole

list of ready-made style sheets will appear

in the right-hand pane. To implement

best practices, you should choose one of

the style sheets marked Accessible (see

Figure 4).

 You can now save this document into

fi
g

u
re

 4

“Dreamweaver MX provides you many
tools that will assist you in the develop-

ment of your CSS-based websites”

24 • MXDJ.COM 4 • 2005

your site folder and attach the CSS file to

your pages as described above.

Design Time Style Sheets
 This convenient Dreamweaver MX

feature allows you to apply a style sheet

so you can see how your site really looks

while you are still in Design view. This

style sheet will not appear on your live

site. From a best practice viewpoint,

this feature is especially useful. If you

are using the import and link method

described earlier (with two style sheets),

attaching a Design Time style sheet will

allow you to design your website using

one of those two style sheets. When you

want to see how the page looks with the

other style sheet, you can easily change

the style sheet.

 Design Time style sheets will also be

helpful for developers who are using

style sheets that will be housed on the

server-side (with, for instance, ASP, PHP,

or ColdFusion Application servers) or

accessed with JavaScript on the client

side. These server-side style sheets are

another way to cope with the lack of CSS

support in older browsers. However, in

previous versions of Dreamweaver, this

approach restricted you from seeing the

effect of the style sheet applied to your

page while you were designing. Design

Time style sheets allow you to apply

your style sheet so you can work visually

within Dreamweaver. Another benefit

to using Design Time style sheets is that

when you upload your site files, you

won’t have to remember to go through

the site removing unnecessary style

sheets.

Validation
 Whether you have created your own

style sheet or used and edited a ready-

made style sheet, validating your CSS

styles will help to ensure that you are not

accidentally using any non-standard tags

or incorrect code. Frequently, problems

with CSS will disappear once the style

sheet is validated and the errors cor-

rected.

 Dreamweaver MX does not have a

CSS validator, but you can accomplish

this by using the W3C CSS Validation

Service on the W3C website. Alternately,

you can validate your HTML or XHTML

mark-up from within Dreamweaver MX

by choosing File > Check Page > Validate

Markup (for HTML) or File > Check Page >

Validate as XML for XHTML.

 Dreamweaver MX provides you many

tools that will assist you in the develop-

ment of your CSS-based websites. With

Dreamweaver MX and a solid under-

standing of CSS and the importance of

writing valid, accessible CSS code, you

are well on your way to creating websites

that will stand the test of time.

More Resources
 For basic information about CSS

Styles, see:

The W3C CSS Pages

CSShark: The CSS Know-How Site. Note, in

particular, The Basics page.

The W3Schools CSS tutorial

“What is the W3C© and why do we care?”

by Julie Hallstrom, in the DevNet on

Macromedia.com

The Dreamweaver MX Help documentation.

To access this material within Dreamweaver

MX, choose Help > Using Dreamweaver >

Adding Content > Inserting and Formatting

Text > About Cascading Style Sheets. Also,

try out the Designing with Cascading Style

Sheets tutorial in the Tutorials section. Even

experienced Dreamweaver users would do

well to check out the new CSS capabilities

by reading through these excellent help

files.

For further, more advanced information on

CSS, consult these sites:

• New York Public Library’s Online Style

Guide provides a thorough XHTML and

CSS Guide.

• Peter-Paul Koch’s charts browser support

for various aspects of CSS: CSS 2 tests.

Bluerobot.com’s The CSS Layout Resevoir (a

collection of “borrowable” multi-column

layouts).

• More borrowable code can be found

on CSS Layout Techniques: for Fun and

Profit on glish.com.

Rachel Andrew runs her own web solu-

tions company in the UK, edgeofmyseat.

com, the company website also being

home to various “web standards”-focused

articles and Dreamweaver extensions.

Rachel is involved with the Web Standards

Project on the Dreamweaver Task Force,

and hopes to encourage best practices in

the support and use of W3C Standards in

Dreamweaver. info@edgeofmyseat.com

4 • 2005 MXDJ.COM • 25

This article explains how to completely change the
graphical appearance of (i.e., "to skin") the V2 ProgressBar
component. Before we begin, a warning: the techniques
described in this article apply to the ProgressBar and to
many other V2 components, but not to all. Some compo-
nents require advanced skinning techniques not discussed
in this article. For example, the Button component's skin,
perhaps surprisingly, is primarily code-based. Skinning a
Button component requires a thorough understanding of
the Button skin code. Likewise, the specific steps required
to skin components made up of multiple subcomponents,
such as the DataGrid or the List, are not covered in this
article. This article will help you get started with skinning
and will give you the skills to skin many V2 components,
but for some components you should expect to do further
research (see Further Study at the end of this article for
suggested resources).

Skinning the V2 ProgressBar Component

by colin moock

26 • MXDJ.COM 4 • 2005

The Basics:
Styles Versus Skins
 A component’s appearance can be

changed in two ways: 1) by setting the

component’s styles, 2) by skinning the

component. Setting a component’s styles

means using code to change the compo-

nent’s color and font without changing

its graphics. For example, the default

appearance of a ProgressBar component

is shown at Figure 1.

 And Figure 2 shows what the

ProgressBar component looks like with

the “themeColor”, “fontFamily” and “font-

Size” styles set.

 Here’s the code used to style the

ProgressBar shown in Figure 2:

pBar.setStyle(“themeColor”, 0xFF0000);

pBar.setStyle(“fontFamily”, “Times New

Roman”);

pBar.setStyle(“fontSize”, 16);

 In Figure 2, the ProgressBar’s color

is now red instead of green and its text

is set in Times New Roman instead of

Verdana, but the basic graphical shapes

of the ProgressBar are the same as they

were in Figure 1. By setting a compo-

nent’s styles, we can gain some control

over the appearance of the component,

but when we need to change more

than just colors and fonts we must skin

the component. Skinning a component

means replacing the component’s graph-

ics entirely, producing a completely

new appearance for the component. For

example, if we were creating an adven-

ture game we might want to skin our

game’s ProgressBar to make it look like

Figure 3.

 Later we’ll examine how the above

“adventure game” ProgressBar was

made. But before we do, it’s worth point-

ing out that not everything about the

appearance of a component can be

changed, even with skins. The internal

display system of each component

determines what aspects of the compo-

nent’s appearance can be changed. For

example, the variable-width “load bar”

section of the ProgressBar component

shown in Figures 1, 2, and 3 is produced

by stretching a thin graphic between

the left and right side of the compo-

nent. Because the graphic is stretched,

it must be a simple, abstract shape not,

say, a repeating image such as the apple

shown in Figure 4.

 Filling a region with a repeated graph-

ic like the apple in Figure 4 is known as

“tiling.” Tiled skins are not natively sup-

ported by the V2 ProgressBar. Hence,

modifying a ProgressBar to look like the

one shown in Figure 4 would require cus-

tom code and in-depth knowledge of the

ProgressBar’s own skinning implementa-

tion.

What, Exactly, Is a “Skin”?
 In interface-programming terms, the

“skin” of a user interface is its graphical

appearance, which is typically separated

from code so that the interface can be

changed visually without affecting the

underlying logic.

 Specifically, for a Flash V2 component,

a “skin” is a collection of movie clips that

contain the component’s graphics. Each

movie clip represents either an entire

state of the component (e.g., enabled,

disabled, pressed, etc) or a subsection of

a particular state or states. For example,

a skin movie clip might contain an entire

disabled button face or just the arrow

icon for a scrollbar. The skin is broken into

multiple sections so that it can be assem-

bled and resized at runtime in response

to either user input or application logic.

Each movie clip in a skin has a specific

Linkage Identifier that is used by the

component to attach the movie clip to

the Flash movie stage. Once on stage, the

movie clips are positioned and scaled to

produce the graphical appearance of the

component.

 Figure 5 shows the skin movie clips

for the ProgressBar component. The

Linkage Identifier for each movie clip is

shown in black text.

 Among the various skin movie clips

shown in Figure 5, those whose IDs begin

with “ProgTrack” are the background of

the ProgressBar while those whose IDs

begin with “ProgBar” are the foreground

of the ProgressBar – the part that stretch-

es horizontally to indicate load progress.

Both the “track” (background) and the

“bar” (foreground) are made up of three

separate sections: a left and right edge

– the “caps” at the ends of the bar – and

a middle section that stretches between

the caps. When the ProgressBar is resized,

the caps remain the same size and are

placed at either end of the bar, while the

middle section is scaled horizontally to

fill the space between the caps. Finally,

the ProgIndBar is a special graphic that

animates between the left and right

caps if the duration of the load opera-

tion being represented is unknown. The

ProgIndBar movie clip is only used when

the ProgressBar instance’s indeterminate

property is set to true.

Changing the Skin of a
Single Instance
 As we’ve just seen, a component’s

skin is made up of graphics stored in

movie clips (well...that’s generally true,

but some component skins are made of

movie clips that link to ActionScript 2.0

classes instead of containing graphics).

To change a skin, then, we need to tell

the component to render itself using our

own, customized movie clips instead of

its default set. There are two ways to tell

the component to use our movie clips

instead of its own:

• change which Linkage Identifiers the

component uses when attaching its

skin movie clips

• set the Linkage Identifiers for our cus-

tom movie clips to match the Linkage

Identifiers used by the component (in

other words, override the component’s

default skin movie clips)

 The first option requires more work,

but lets us skin a component on a per-

instance basis. The second option is

easier to implement, but forces every

instance of the component being skinned

to use the custom skin. Let’s take a look

at both options, starting with changing

the Linkage Identifiers a component uses

when attaching its skin movie clips.

The V2 components store the Linkage

Identifiers for their skin movie clips

in so-called “skin properties”. For

example, the Linkage Identifiers for

the ProgressBar component (as shown

in Figure 5) are stored in the following

properties: ProgressBar.progTrackLeft-

Name, ProgressBar.progTrackMiddle-

Name, ProgressBar.progTrackRight-

Name, ProgressBar.progBarLeftName,

ProgressBar.progBarMiddleName,

ProgressBar.progBarRightName,

ProgressBar.progBarIndName. We can

change which movie clips a component

instance uses for its skins by setting its

skin properties. Let’s see how this works

by making a progress bar with a black

4 • 2005 MXDJ.COM • 27

square for its track’s left cap instead

of the default rounded grey left cap.

Admittedly, this is a boring skin but it

demonstrates the general principle. We’ll

make a more interesting skin later. Follow

these steps:

1. Create a new Flash document (.fla file).

2. On Frame 1, Layer 1 drag a ProgressBar

component to the stage.

3. Create a new movie clip symbol named

Square.

4. In the Square movie clip, draw a small

square shape 4 pixels wide and 4 pix-

els high. Position the shape with its

top left corner at the Square symbol’s

registration point as shown (greatly

magnified) in Figure 6.

5. Select the Square movie clip symbol in

the Library

6. On the Library panel’s pop-up options

menu (top-right), select Linkage...

7. On the Linkage Properties dialog, for

Identifier, enter “SquareSymbol”.

8. Click OK to accept the Linkage

Properties settings.

9. With the ProgressBar component

instance selected on stage, add the fol-

lowing code to the Actions panel:

onClipEvent (initialize) {

this.progTrackLeftName =

“SquareSymbol”;

}

10. Export the movie using Control > Test

Movie. The ProgressBar component

should look like the one in Figure 7

(again greatly magnified to show the

new skin). Note the black square on

the left side of the bar.

 The preceding steps describe how to

modify the skin of a component instance

placed on stage manually in the Flash

MX 2004 authoring tool. We changed

the skin of the component by setting

the progTrackLeftName property within

the component’s “initialize” event. But if

we had created the instance with code

at runtime, we would not be able to use

onClipEvent() as we did in Step 9. Instead,

we would use the createClassObject()

method’s initObj parameter to set the

skin property on the new component

instance. The following code does just

that; it creates a ProgressBar instance

at runtime with createClassObject()

and uses the initObj parameter to set

the progTrackLeftName property to

“SquareSymbol”. The result is exactly the

same as that shown in Figure 7.

import mx.controls.ProgressBar;

this.createClassObject(ProgressBar,

“pBar”, 0, {progTrackLeftName:”Square

Symbol”});

Where to Find a
Component’s Skin
Properties
 As we’ve just seen, in order to skin a

component we can assign new movie clip

Linkage Identifiers to its skin properties. But

how do determine which skin properties a

component uses? There are two options.

 First, we can look in the Flash MX 2004

Help files. The so-called “ellipsis” release of

the Flash authoring tool (Version 7.2) con-

tains updated Help files that include the

skin properties for all V2 components. For

each component, the skin properties are

listed in the following location:

• Using Components > Components

Dictionary > [component name] com-

ponent > Customizing the [component

name] component > Using skins with

the [component name] component

 For example, the skin properties for

the ProgressBar component are listed

here:

• Using Components > Components

Dictionary > ProgressBar compo-

nent > Customizing the ProgressBar

component > Using skins with the

ProgressBar component

 Alternatively, we can find the skin

properties for a component by looking

at the component’s class source code.

The component classes are located in the

Flash MX 2004 application folder, in the

following directory:

• Windows: \Program Files\Macromedia\

Flash MX 2004\[LANGUAGE_CODE]\

First Run\Classes\mx\controls

• Macintosh: HD/Applications/

Macromedia Flash MX 2004/First Run/

Classes/mx/controls

 For example on an English language

Windows system, the ProgressBar compo-

nent’s class is located here:

• \Program Files\Macromedia\Flash MX

2004\en\First Run\Classes\mx\controls\

ProgressBar.as

 Within that file we can find the follow-

ing skin property definitions:

fi
g

u
re

 1
fi

g
u

re
 2

fi
g

u
re

 3
fi

g
u

re
 4

28 • MXDJ.COM 4 • 2005

var progTrackLeftName:String =

“ProgTrackLeft”;

var progTrackMiddleName:String =

“ProgTrackMiddle”;

var progTrackRightName:String =

“ProgTrackRight”;

var progBarLeftName:String =

“ProgBarLeft”;

var progBarMiddleName:String =

“ProgBarMiddle”;

var progBarRightName:String =

“ProgBarRight”;

var progIndBarName:String =

“ProgIndBar”;

 However, locating the skin properties

in the source code for a component’s

class can be difficult because the code

is often not thoroughly commented and

the skin property names do not follow

a single naming convention. Some skin

property names end with the word “Skin”,

as in “Button.trueUpSkin”; some skin

property names end with the word “Icon”,

as in “RadioButton.falseOverIcon”, while

still others follow no convention at all, as

in “NumericStepper.upArrowDisabled”.

Hence, the easiest way to determine the

skin properties for a class is through the

Flash MX 2004 Version 7.2 updated docu-

mentation.

 No matter how you find a compo-

nent’s skin properties, once you know

them you can skin the component by

setting those properties to the Linkage

Identifiers of your own custom skin movie

clips.

Creating Skins That Can Be
Colored with Styles
 In our earlier SquareSymbol example,

we replaced a ProgressBar instance’s

left track cap with a black square. In the

example, we permanently set the color

of the square to black – any attempt to

change the color of the left track cap to

red using styles would now fail. However,

with a single line of code, we can make a

skin’s color alterable with styles. Using the

same document we created earlier, follow

these steps to see how it works:

1. Select the ProgressBar instance on

stage.

2. In the Properties panel, set the

ProgressBar’s instance name to “pBar”.

3. Edit the Square movie clip symbol.

4. Select the shape inside the Square

movie clip.

5. From the Modify menu, choose

Convert to Symbol.

6. For the symbol Name, enter

“SquareShape”. For Behavior, choose

“Movie clip”.

7. Edit the SquareShape movie clip sym-

bol.

8. Rename Layer 1 to “graphic”.

9. Add a new Layer to the SquareShape

movie clip and name it “actions”.

10. Select Frame 1 of the actions layer.

11. In the Actions panel, enter the follow-

ing code:

mx.skins.ColoredSkinElement.

setColorStyle(this, “themeColor”);

 That code registers the skin movie clip

as a styleable skin element. As a result, it

will change color when the “themeColor”

style is set.

12. Return to the main document time-

line.

13. Select Frame 1.

14. In the Actions panel, enter the follow-

ing code to set the ProgressBar theme

color to red:

pBar.setStyle(“themeColor”, 0xFF0000);

15. Export the movie using Control > Test

Movie. The ProgressBar component

should look like the one in Figure 8

(again magnified to show the new

skin). Notice that the left track cap is

now red because it is registered to

change color when the “themeColor”

style is set.

 A detailed look at styleable custom

skins is outside the scope of this article,

but Figure 8 should give you a sense of

what’s possible. For more information on

associating skins with color styles, see

the following document in the Flash MX

2004 Version 7.2 updated Help: Using

components > Customizing components

> About skinning components > Linking

skin color to styles.

Changing the Skin of All
Instances in a Document
 So far our SquareSymbol example

has shown how to change the left track

cap of a single ProgressBar instance

only. To change the left track cap of all

ProgressBar instances in a document we

have several options. We can:

• set the progTrackLeftName property

on the ProgressBar class’s prototype

• use the default Linkage Identifier for

our custom left track cap movie clip

• set the progTrackLeftName property in

a ProgressBar subclass

 We’ll examine the first two techniques

in this article; for information on subclass-

ing component classes see the resources

under Further Study.

 Here’s an example of the first technique,

fi
g

u
re

 5

4 • 2005 MXDJ.COM • 29

setting the progTrackLeftName property on

the ProgressBar class’s prototype:

import mx.controls.ProgressBar;

ProgressBar.prototype.progTrackLeft-

Name = “SquareSymbol”;

 That code tells the ProgressBar class

to use the SquareSymbol movie clip

when creating any ProgressBar compo-

nent’s left track cap. If the above code

appears on frame 1, then all ProgressBar

instances placed on frame 2 or later will

be affected. That said, it is still possible to

customize the left track cap for any single

instance. To customize a single instance,

we follow the exact steps we studied

earlier in the SquareSymbol example--

using onClipEvent(initialize) (for author-

time instances) or createClassObject()’s

initObj parameter (for runtime instances)

to set the instance’s progTrackLeftName

property to the desired movie clip. For

example, to apply a triangular cap to a

single ProgressBar instance we would use

the following code (assuming we had also

created a triangle movie clip and given it

a Linkage Identifier of “TriangleSymbol”):

onClipEvent (initialize) {

 this.progTrackLeftName =

“TriangleSymbol”;

}

 Now let’s consider the second tech-

nique for changing the left track cap of

all ProgressBar instances in a document

– using the default Linkage Identifier for

our custom left track cap movie clip. We’ll

start by determining the default Linkage

Identifier for the skin movie clip we want

to customize, and then we’ll assign that

Linkage Identifier to our own custom skin

movie clip, overriding the component’s

default skin. Let’s return to the document

we created earlier and follow these steps

to see how it works:

1. On the main timeline, select the on-

stage ProgressBar instance.

2. Delete all code from the Actions panel.

3. Open the following document in the

Flash MX 2004 Version 7.2 updated

Help:

• Using Components > Components

Dictionary > ProgressBar compo-

nent > Customizing the ProgressBar

component > Using skins with the

ProgressBar component

4. In the skin-property table, under the

Description column for the progTrack-

LeftName property, find the property’s

“default value”. The “default value” is the

default Linkage Identifier for the left

track cap skin movie clip. In our case,

it’s “ProgTrackLeft”.

5. Change the Linkage Identifier for

the Square movie clip symbol to

“ProgTrackLeft”. Note that case sensitiv-

ity matters! Make sure to use a capital

P, T, and L when setting the Linkage

Identifier.

6. Export the movie using Control > Test

Movie. The ProgressBar component

should once again look like the one in

Figure 7.

 Because we set the Square sym-

bol’s Linkage Identifier to match the

ProgressBar’s default Linkage Identifier

for the left track cap skin, the ProgressBar

uses our Square instead of its own skin.

If a document’s Library contains a movie

clip exported with the same Linkage

Identifier as a component’s internal skin

movie clip, then the document’s movie

clip overrides (i.e., is used instead of) the

component’s internal movie clip.

 Overriding a component’s skin movie

clip is an attractive way to skin components,

especially for designers, because it involves

no code whatsoever. However, for a com-

plicated component, creating skin movie

clips and assigning Linkage Identifiers can

be time consuming. Fortunately, we can

use so-called “themes” to reduce the labour

required to override the skin of every com-

ponent instance in a document.

Themes
 A “theme” is a collection of skin

movie clips and code used to change the

appearance of the entire set of V2 com-

ponents. Each theme is contained within

its own .fla file. Macromedia provides

two themes with Flash MX 2004, each of

which offers its own graphical look for the

V2 components. The default theme used

by the V2 comp onents is the Halo theme,

which resides in a file named HaloTheme.

fla in the following location:

• Windows: \Program Files\Macromedia\

Flash MX 2004\[LANGUAGE_CODE]\

Configuration\ComponentFLA\

HaloTheme.fla

• Macintosh: HD/Applications/

Macromedia Flash MX 2004/

Configuration/ComponentFLA/

HaloTheme.fla

 The other theme supplied by

Macromedia is known unceremoni-

ously as “Sample Theme.” It resides in

a file named SampleTheme.fla in the

following location:

• Windows: \Program Files\Macromedia\

Flash MX 2004\[LANGUAGE_CODE]\

Configuration\ComponentFLA\

SampleTheme.fla

fi
g

u
re

 6

fi
g

u
re

 7

fi
g

u
re

 8

30 • MXDJ.COM 4 • 2005

�������������������
����������������������������
��������������������������
�����������������������������
�����������������������������

������������������������

����������������������������
��������������������������������

� �

��
���
����������������������
��
���
���

 © 2005 WEB SERVICES EDGE. ALL RIGHTS RESERVED

��

�����
��������������������

���������������
����������������������

�������������������������

�
�������������������

����������
����������
�������������������

�����������
��
���
���
���������������������������������������
��
���������������������������������������

�����������

�����������

�����������������������
�����������������
���������������

�������������������

����������������������

��������������
������������

���������������������

�

����������
����������������
����������������

�������������������
�

TM

TM

������������

� ������������������������������
� �������� �������������������������������
� � ������������������������������
� � �����������������������

�

�� ������������������
��

�

• Macintosh: HD/Applications/

Macromedia Flash MX 2004/

Configuration/ComponentFLA/

SampleTheme.fla

 Creating custom themes and using

the supplied themes is not our focus

here; we’re interested in themes only

because they supply us with the skin

movie clips we need to override a com-

ponent’s skin, complete with the correct

default Linkage Identifiers!

 Here’s how it works. Each theme has

an entire set of skin movie clips for every

available V2 component. To skin a com-

ponent in a new document, we simply

copy the component’s skin movie clips

from one of the supplied themes into the

new document, then alter the graphics as

desired. PRESTO! Our new skin will auto-

matically be applied to all component

instances in the new document.

 Let’s use this “copy-from-theme”

approach to build the adventure-game

ProgressBar example shown earlier in

Figure 3. But as we build the example,

remind yourself that this technique works

only with components that use graphics-

based skins. As we learned earlier, compo-

nents that are nested or use code-based

skins require advanced techniques that are

not covered here, but can be found in the

Flash MX 2004 Version 7.2 help.

The Adventure-Game
ProgressBar Example
 Earlier we skinned the left track cap of

a ProgressBar but we didn’t actually use

the ProgressBar to show any load prog-

ress. This time we’ll link our adventure-

game-style ProgressBar to a Loader com-

ponent so that we can see it in action.

 Before we start, here’s a warning to

heed when using ProgressBar with Loader:

when a ProgressBar’s mode property is set

to “event” (the default) it won’t broadcast

complete() or progress() events. If you want

to register for events from a ProgressBar

make sure its mode is set to “polled” or

“manual”. If you are using the ProgressBar in

“event” mode then you should register for

events with the ProgressBar’s source rather

than with the ProgressBar itself.

 Bearing that warning in mind, follow

these steps to create a ProgressBar linked

to a Loader component:

1. Create a new Flash document (.fla file)

named skinnedV2ProgressBar.fla.

2. Rename Layer 1 to “assets”.

3. Create a new layer and name it “scripts”.

4. On Frame 1 of the assets layer drag a

ProgressBar component to the stage.

5. In the Properties panel, set the

ProgressBar component’s instance

name to “pBar”.

6. On Frame 1 of the assets layer drag a

Loader component to the stage.

7. In the Properties panel, set the Loader

component’s instance name to “load-

er”. Your document should now look

like the one shown in Figure 9.

8. Finally, select Frame 1 of the scripts

layer and add the following code to

the Actions panel:

// Make the load bar red.

pBar.setStyle(“themeColor”, 0xFF0000);

// Tell the ProgressBar to show prog-

ress for the Loader.

// (The source property specifies the

object for which

// load progress will be displayed.)

pBar.source = loader;

// Load an image into the Loader.

loader.contentPath = “http://

marsrovers.jpl.nasa.gov/gallery/press/

spirit/”

 + “20050113a/site_

A89_CY_navcam_360_cyl-A365R1.jpg”;

 Our ProgressBar is now fully func-

tional. Let’s get skinning.

 First, we need to copy the ProgressBar

skin assets from the HaloTheme.fla file to

our document’s Library. Follow these steps:

1. Select File > Import > Open External

Libary.

2. Open HaloTheme.fla, which is in the

following location:

• Windows: \Program Files\

fi
g

u
re

 1
0

fi
g

u
re

 9

32 • MXDJ.COM 4 • 2005

Macromedia\Flash MX

2004\[LANGUAGE_CODE]\

Configuration\ComponentFLA\

HaloTheme.fla

• Macintosh: HD/Applications/

Macromedia Flash MX 2004/

Configuration/ComponentFLA/

HaloTheme.fla

3. With both the skinnedV2ProgressBar.

fla Library and the HaloTheme.

fla Library open, drag the follow-

ing folder from HaloTheme.fla to

skinnedV2ProgressBar.fla’s Library:

Flash UI Components 2 > Themes >

MMDefault > ProgressBar Assets

 Your skinnedV2ProgressBar.fla Library

should now look like the one shown in

 In the Elements folder (shown in

Figure 10), you should recognize the

following symbols as the ProgressBar

skin movie clips (shown earlier in

Figure 5): ProgBarLeft, ProgBarMiddle,

ProgBarRight, ProgIndBar, ProgTrackLeft,

ProgTrackMiddle, and ProgTrackRight.

Those symbols are the movie clips that

you would normally redesign when skin-

ning the ProgressBar.

 In addition to the skin movie clips

from Figure 5, the Elements folder also

contains a series of symbols whose

names end with “ThemeColor”:

ProgBarCapThemeColor, ProgBarIndMiddl

eThemeColor, ProgBarIndThemeColor, and

ProgBarMiddleThemeColor. Those movie

clips contain the raw shapes for the caps

and middles of the ProgressBar’s track

(background), load bar (foreground), and

indeterminate bar (animated bar that indi-

cates an unknown load progress). The raw

shapes are contained by the “ThemeColor”

movie clips so that they can be associated

with a style (exactly like we saw earlier

under “Creating skins that can be colored

with styles”). Each “ThemeColor” movie

clip contains the following single line of

code, which causes its color to change

when the “themeColor” style is set:

mx.skins.ColoredSkinElement.

setColorStyle(this, “themeColor”);

 Finally, the ProgressBar Assets folder

itself contains a single movie clip symbol

named ProgressBarAssets. That symbol

simply forces the ProgressBar skins to

export with the movie.

 For our purposes, we’re only interested

in skinning the track (background) of the

ProgressBar, so we’ll only need to change

the following movie clips: ProgTrackLeft,

ProgTrackMiddle, and ProgTrackRight. In

addition to changing those movie clips,

we’ll also create three new movie clips

to contain our track’s highlight shapes:

ProgTrackLeftHighlight, ProgTrackMiddle

Highlight, and ProgTrackRightHighlight.

We place the highlight shapes in movie

clips so that we can associate them with

the “themeColor” style (i.e., so that they

change color whenever the “themeColor”

style is set). The highlight movie clips are

nested inside the track movie clips.

 Figure 11 shows the completed skin

movie clips for our ProgressBar skin.

 Notice that the ProgTrackMiddle

movie clip has a transparent (i.e.,

0% alpha) shape just above the

ProgTrackMiddleHighlight movie clip.

The transparent shape forces the track’s

middle section to line up with the left

and right caps. Transparent shapes are

often used to force proper alignment in

graphical component skins.

 Now follow these steps to apply

the adventure-game style skin to the

ProgressBar in skinnedV2ProgressBar.fla.

1. Edit the ProgTrackLeft movie clip and

delete everything on its stage (you

may have to unlock layers to do so).

2. Delete all but one of the layers in

ProgTrackLeft’s timeline.

3. Rename the remaining layer “graphic”.

4. Draw a shape like the one shown for

ProgTrackLeft in Figure 11. Make sure

to place all graphics below, and to the

right of, the symbol’s registration point

(i.e., the registration point should be at

the top-left corner of the graphic).

5. Draw a shape like the one shown for

ProgTrackLeftHighlight in Figure 11.

6. Select the ProgTrackLeftHighlight

shape.

7. Convert the ProgTrackLeftHighlight

shape to a movie clip by choosing

Modify > Convert to Symbol.

8. On the Convert to Symbol dialog, for

Name, enter ProgTrackLeftHighlight,

then click OK.

9. Edit the ProgTrackLeftHighlight symbol.

10. Rename Layer 1 to “graphic”.

11. Create a new layer and name it

 “actions”.

12. Select Frame 1 of the actions layer.

13. Add the following code to the Actions

 panel:

mx.skins.ColoredSkinElement.

setColorStyle(this, “themeColor”);

14. Repeat steps 1 to 11 to create the

ProgTrackMiddle and ProgTrackRight

movie clips, substituting the appropriate

graphics and symbol names from Figure

11. Remember to include the transparent

shape above ProgTrackMiddleHighlight

in ProgTrackMiddle.

 And that’s it! The adventure-game

ProgressBar skin is done. Choose Control

> Test Movie to see it if worked. If it didn’t

work, try comparing it with the down-

loadable example file provided at the

beginning of this article.

Further Study
 For more information on skinning and

customizing the V2 components, see the

following resources:

• Skinning the Flash MX 2004

Components

• Flash MX 2004 Version 7.2 updat-

ed Help: Using Components >

Customizing Components > About

Skinning Components

• Building and Testing Components in

Macromedia Flash MX 2004

• Flash MX 2004 Version 7.2 updated

Help: Using Components > Creating

Components

fi
g

u
re

 1
1

Colin Moock is an

independent web

guru with a passion

for networkedcreativ-

ity and expression.

He is author of the

world-renowned guides

toFlash programming,

“ActionScript for Flash

MX: The Definitive

Guide” (O’Reilly &

Associates, 2003,

2001) and ActionScript

2.0 Essentials(O’Reilly

& Associates, 2004). A

web professional since

1995, Moock runs one

of the web’s most ven-

erable Flash developer

sites, www.moock.org.

He spends most of his

time pursing his cardi-

nal interest, multiuser

application develop-

ment, and working on

Unity, moock.org’s

complete commercial

framework for creating

and deploying mul-

tiuser applications for

Macromedia Flash.

colin@moock.org

4 • 2005 MXDJ.COM • 33

n last month’s article I led off with

the same quotation from Yeats. At

the risk of seeming culturally chal-

lenged, I’ll lead off with it again

for the second treatment of how masks

function in Fireworks, simply because it

is so apt.

 A mask in a graphical editor like

Fireworks (or Flash, among others) has

the same function that Yeats describes

– to control how much we can see of the

object behind the mask. The interplay

between the mask and the mask wearer

is what makes our hearts beat. And of

course, when we’re dealing with art in

any form we do want to get the hearts of

our viewers to beat just a little harder. The

idea is to grab and draw and maintain

attention with our graphics, be they in

print or online.

 Last month you saw how to do that

with bitmap masks. The focus for this

month’s article is on how vector objects

can be used in Fireworks to hide and

reveal images and objects in our compo-

sitions. And just as in the previous article

you’ll have the chance to see some practi-

cal examples of how vector-based tools in

Fireworks can be used for some common

creative effects. But first the obligatory

review.

Masks and Masking
Reviewed
 What is a mask? A mask is a graphical

object that is placed on top of another

image and given instructions on how it

should interact with its partner. Masks

are always a pair of objects working in

concert to allow creative interplays that

modify the appearance of the two. Masks

are a marriage between two objects: a

masking object lies above its partner and,

through its properties, hides or reveals

the masked object sitting below.

 As well as the how of masking, it’s

also important that you understand the

why of masking and the advantages that

these techniques afford you.

1. Masking is a non-destructive process

that does not alter the masked object.

If things go awry, deleting or editing

the mask does no damage to the origi-

nal photograph or art.

2. Masking techniques can help you

overcome Fireworks’ limited tool set for

working with bitmap images. It should

come as no surprise that Fireworks is

not Photoshop, but many people still

insist on grumbling that the tools are

dissimilar between the two applica-

tions. Fireworks is made to produce

screen graphics and Photoshop tar-

gets print images. So while they both

push pixels around, Fireworks doesn’t

have the precise bitmap editing tools

that Photoshop contains. Does this

mean that you can’t get creative with

Fireworks? Not at all, but you do have

to use different techniques, and many

of those involve masking.

3. Masks remain editable in your source

Fireworks file unless you take con-

scious steps to merge your objects

together and flatten them. So while

Fireworks may not allow you to select

pixels with the same precision that

Photoshop has, the ability to go back

a year from now and open a Fireworks

PNG file and make some minor

adjustments to a mask has significant

advantages over techniques that may

throw pixels away. Once those pixels

are gone, they’re gone for good. Masks

help you avoid making changes that

you can’t recover from, or edit, when

future revisions need to be made.

 Masks themselves are relatively easy

to understand. When one graphical

object interacts with another as a mask,

new transparency values are created for

the masked object based on the color of

the masking object. If the masking object

is entirely white then nothing will appear

to have changed in the masked image.

If on the other hand, the masking object

is completely black the masked image

will be totally transparent. Additionally,

areas outside a mask will be hidden as

well. Figure 1 illustrates how a mask with

varying fill properties affects the masked

image below it, creating areas that are

opaque, transparent, and semi-transpar-

ent based on the size and position of the

mask and the colors used in the masking

object.

 When it comes to Fireworks then,

knowing how to create vector objects

and using them in different combinations

allows you a great deal of creative license.

Those who master Fireworks have learned

vector objects

Uncovering Fireworks Masks:
Masking with Bitmaps

 In part two of this 2-part article on how masks function
in Fireworks, we look at vector objects

by kim cavanaugh

i

fi
g

u
re

 1

34 • MXDJ.COM 4 • 2005

how to mask properly, and whether they

use bitmap objects or vector shapes,

they have a handle on how the interplay

between objects can be used to maxi-

mum advantage.

Using Masks in Fireworks
for Creative Effects
 The rest of this article will focus on

those fundamental vector masking skills

and three common methods for using

masks in Fireworks for creative effects.

 The use of vector objects can be bro-

ken into three categories based on the

effects you hope to achieve:

1. Masking with text allows you to paste

a bitmap image such as a photograph

inside text objects. You can also create

text masks with complex stroke-and-fill

properties that give you even greater

control over the output in your final

composition.

2. Vector masks can be used to crop or

fade an image to perform tasks such as

cropping an irregular shape or creating

a collage. This type of mask can be per-

formed either with the automatic tools

that Fireworks provides or with your

own custom combination of fills and

strokes on a simple vector shape.

3. Removing backgrounds is also accom-

plished with vector masks, most com-

monly created using the Pen tool to

create an irregular shape that covers

the part of the image that you want to

show, while hiding the rest of the pho-

tograph.

 You’ll take a look at each of these

methods in turn as the rest of this article

shows how each of these techniques is

accomplished.

Masking with Text by
Pasting Inside
 Combining text with images is a great

way to create interest in a composition.

Any image can be pasted inside text,

which automatically creates a mask.

1. To begin, start a new Fireworks

document and choose File > Import

to find a appropriate image to work

with. In these examples I’ve selected

sunset.jpg from My Documents/My

Pictures/Sample Pictures that Windows

contains. (Macintosh users can find

some great photos to work with at

MacintoshHD:Library:User Photos.)

2. Choose File > Import and browse to

the image you wish to use. After you

choose Open you’ll be returned to your

canvas where you can click once to

import the image. Save your file.

3. Using the Text tool type some text

directly on top of your image. A nice

heavy font works best here.

4. Select the image and cut it from the

canvas by choosing Edit > Cut, or press

the Ctrl/Cmd+X.

5. Select the text and choose Edit > Paste

Inside. Your photograph will now

replace any fill that has been applied

to your text.

6. In the Layers panel note the way that

your photograph has been combined

with the text. Figure 2 illustrates how

a text mask applied in this manner will

appear in the Layers panel.

7. Click on the thumbnail of your text on

the right in the Layers panel to select

the text. You will see a yellow border

appear around the thumbnail and your

text will also have a yellow box sur-

rounding it.

8. With the text selected you can now

use the Property Inspector to change

some of the text properties. In the

example you see in Figure 3 I have

added a stroke color and set the stroke

to 3 pixels wide. I’ve also applied two

instances of a drop shadow effect to

the text to get a good heavy shadow.

9. Notice that when using the Paste

Inside technique that by default you

see the path outline and the fill and

stroke, as indicated in the Property

Inspector. This differs from the tech-

nique you’ll use next to apply a mask

manually.

Masking with Text Objects
 In the first method for applying a text

mask we cut and pasted the image into

a text object. In this next lesson you’ll

see how to create a text object and set

its properties before applying your mask.

This technique uses the ability that masks

have to set varying degrees of transpar-

ency to create an effect.

1. Start a new Fireworks document with

a black canvas color and import your

practice photograph. Save your file.

2. Import the image you wish to mask by

choosing File > Import and browsing

fi
g

u
re

 2

fi
g

u
re

 3
fi

g
u

re
 4

4 • 2005 MXDJ.COM • 35

to your photograph.

3. Use the Text tool to create a text object

with a message of your choosing. In

my example I used an Arial font set to

96 pixels, bold.

4. Click on the Fill color button in the

Property Inspector and select the Fill

Options button at the bottom of the

pop-up window that appears. Set the

fill color to black and the Texture value

to Hatch 1 with 100% of the texture

showing. Figure 4 shows how your Fill

options should appear.

5. Use the same method for creating a

Stroke on your text. Select the Stroke

color button and click on the Stroke

Options button to see all of the pos-

sible selections. For my example I

chose a white stroke color with a grain

texture applied at 88% and a width of

4 pixels. Refer to Figure 5 for a look at

how your text should appear.

6. Once you have the text appearance set

the way you’d like, Shift+click the text

and the photo so they’re both selected.

Or, if those are the only two objects

in your document press Ctrl/Cmd+A.

Both the text and the image must be

selected before you proceed.

7. Choose Modify > Mask > Group as

Mask to apply the mask. Depending

on the colors you’ve used the lighter

colors in the text will allow the image

to be seen while the darker colors will

hide the photo.

8. You can add additional effects to get

some interesting results by selecting

the text object in the Layers panel and

then turning to the Property Inspector

to apply your effects. In Figure 5 you

see my sample where a red glow effect

has been added.

Masking with Vector Shapes
 Now that you’ve seen a couple of

examples of how masks can be created

with text, let’s move on to the next cat-

egory – masking with vector shapes.

 Once again there’s an automated

method for making masks like this and

techniques that allow you greater control

over your final output. Let’s look at both

methods so you have a handle on the

basic principles.

Masking with the Fade
Image Command
 Using the Fade Image command

that ships with Fireworks allows you to

quickly fade images using 8 presets that

ship with Fireworks. The command auto-

matically draws an object with a gradient

fill then applies the mask to a selected

image to create a fade effect. This meth-

od is fast and easy, but since preset fills

are used the creative options are a little

limited. Let’s take a quick look at how it’s

done.

1. Open a file or import one of your exist-

ing images to a new Fireworks docu-

ment. Select the image you wish to

fade.

2. From the Menu Bar select Commands

> Creative > Fade Image.

3. Click on one of the fade thumbnails,

shown in Figure 6, to set the shape and

direction that you want your image to

fade. Click OK.

4. Your image will now be converted to

a masked object with portions of the

image changing from transparent to

opaque based on the size and position

of the masking object that the com-

mand creates. You can modify the fade

by adjusting the position and width of

the gradient inside the masking object

by adjusting the control handles that

appear on screen.

Cropping with Vector Masks
 Now that you’ve seen the auto-

mated method for creating a fade let’s

look at how the same principles are

fi
g

u
re

 5

fi
g

u
re

 6

fi
g

u
re

 7

fig
u

re
 8

36 • MXDJ.COM 4 • 2005

applied in a method that gives you

more creative control. By creating your

own object and setting its shape, posi-

tion, size, and fill properties you have

complete freedom to create your mask

in countless ways.

1. Once again start by creating a new

Fireworks document and importing

one of your practice images.

2. In this example you’ll create an oval

crop with a textured appearance by

positioning an oval shape over the top

of your image. Using the Ellipse tool,

draw an oval shape over the top of

your image.

3. With the oval shape still selected, set

your fill to the Jeans pattern by click-

ing on the Fill type drop-down in the

Property Inspector.

4. Set the edge of your shape to Feather

with a value of 16 pixels. Set the stroke

to None. Figure 7 displays the correct

Fill and Stroke settings for this exam-

ple.

5. Once your settings for the oval shape

are correct, select both the shape and

the image under it by Shift+clicking

the two objects, or select them both in

the Layers panel.

6. From the Menu Bar choose Modify >

Mask > Group as Mask. Your two imag-

es will now be combined as you see in

Figure 8.

 In this example the Jeans texture was

selected because it demonstrates how

color variations work when a mask is cre-

ated. By using a texture that has a range

of colors from dark to light, the effect of

applying the mask is a textured appear-

ance for your image.

 Of course there are endless pos-

sibilities for using masks in this manner,

including using textures and gradient fills

to further modify how your composition

will appear. You should be able to see

clearly from this example that adjusting

the masking object so there are ranges

of shades from dark to light results in an

entirely new appearance for your image.

Removing Backgrounds
with Masks
 Perhaps the most common use of

masks is for the removal of objects from

the background. Unlike Photoshop,

where the pixels in the background are

physically removed from the image, with

masks the background is made trans-

parent by not covering it with a mask.

Typically the shape itself is created by

using the Pen tool since this allows you

the greatest possible control over the

position of the anchor points that define

your shape and the lines that connect

your points.

 By necessity this example will be brief,

but there are several excellent tutorials

online that cover the use of the Pen tool

and how masks are used to remove back-

grounds. The key to remember is that

your shape must cover the area of the

image that you want to remain visible,

while leaving the background outside the

mask.

1. Start once again by creating a new

Fireworks document and importing

one of your practice images.

2. Select the Pen tool and stitch a basic

shape around the part of the image

you wish to keep. By clicking and

releasing with your mouse you’ll create

square anchor points that are con-

nected by straight lines, as you see in

Figure 9. Using this method allows you

to quickly “rough in” the shape of your

mask.

3. With your basic shape in place, use the

Pen tool to modify your anchor points

as necessary. Click directly on top of an

existing anchor point, represented by

the tiny squares at the border of the

shape, and while holding down the

mouse button, gently drag away from

the point. With a little bit (OK, maybe a

lot) of practice you’ll be able to modify

your points so that the lines in the

shape precisely cover your image.

4. Additional modifications to the anchor

points and their connecting lines can

be achieved by using the Subselection

tool (the white arrow in the Tools

panel) to modify the shape.

5. Once your shape covers the part of

the image you wish to keep set the

Stroke to None and the Fill color to

white. If you want to blur the edges of

the masked object a bit set the Edge

to Feather with a value of 3 or 4 pixels.

This is often helpful where you need to

hide any minor imperfections in your

mask.

6. Select both the masking object and

the object to be masked then choose

Modify > Mask > Group as Mask. The

parts of your image not covered by the

masking object will now be hidden

from view.

7. For final adjustments to your mask

simply select the thumbnail image of

the shape in the Layers panel. Your

path outline will appear in yellow and

you can then use either the Pen tool

or Subselection tool to further modify

your mask. Figure 10 shows the final

output that I achieved in this quick

example.

Summary
 In this article you’ve seen the three

most common methods for combining

vector objects with images to create masks.

Masks can be generated with text objects,

with basic shapes, or with complex shapes

that you draw with the Pen tool. All three

techniques are important skills to develop

as you continue to develop your creative

chops with Fireworks.

Kim Cavanaugh has been teaching and

writing about web design software from

Macromedia for over 5 years. He has

written two books about Dreamweaver

and Fireworks, collaborated on books

about Dreamweaver, Fireworks, Flash

and Contribute, and continues to write

extensively about Studio MX tools for

CommunityMX.com. In addition to his

tutorials at CommunityMX, you can find

more of his tutorials at his Beginner’s

Guide to Dreamweaver and Fireworks

website (www.dw-fw-beginners.com) and

read about things that interest him at his

BrainFrieze blog (www.brainfrieze.net).

cavanaug_l@firn.edu

fi
g

u
re

 9

fi
g

u
re

 1
0

4 • 2005 MXDJ.COM • 37

 those not familiar with

web services, they are a way

for servers to exchange mes-

sages with each other using

XML standards. Despite the

extreme hype, web services do

not enable you to do anything

that was not previously

possible. Since the earliest

versions of ColdFusion, CF

developers have used the

CFHTTP tag to post an HTTP

request to another server and

then analyzed the response.

Submitting (or receiving) a

request via web services simply

does the same thing, albeit

using XML standards.

 ISSUES IDENTIFIED & DISCUSSED

10
For

by steven rubenstein

38 • MXDJ.COM 3 • 2005

CFMX and Web Services
 With ColdFusion MX, Macromedia

made implementing web services very

easy. (Although CFMX 7 was recently

released, the web services implementa-

tion has no major changes or enhance-

ments.) To receive a web services request,

simply create a ColdFusion Component

(CFC) and set the “access” value to

“remote” for those functions which

should be accessible as a web service.

 One benefit of web services is that

they are “self-describing,” meaning the

web service itself provides the docu-

mentation that tells others systems (or

people) the inputs (name and field type)

and output field type for that web ser-

vices function. This documentation is

Web Services Definition Language, or

WSDL. To generate the WSDL file for each

“access=remote” function in a ColdFusion

Component, simply call that component

via your browser followed by “?wsdl”. For

instance:

http://localhost/YourComponent.

cfc?wsdl

 The resulting file is a WSDL document,

which is just an XML document.

 To submit a web service via

ColdFusion, you can use the CFINVOKE

tag just as if you were submitting a

request to a normal CFC function. Other

methods of invoking functions will

work as well, such as within CFSCRIPT.

It doesn’t matter whether the web ser-

vice request is sent to a server running

ColdFusion, Java, .NET, PHP, and so on.

How to Web Services-
Enable Applications:
A Case Study
 So implementing web services func-

tions in ColdFusion is simple. But that’s

very different from web services-enabling

your application. This requires more than

just creating some CFC functions set to

“access=remote.” It requires authenticat-

ing the user submitting the request,

authorizing they have permission for that

function, and validating that they own

each target of that request.

 For instance, if the function is to

update a product, you first authenticate

the user, i.e., whether they are logged in. If

the user isn’t logged in or their session has

expired, they must first log in. Once you

have determined their identity, you next

authorize whether they have permission

to update products. This is based on how

you implement permissions, which can

be via roles, individual permissions, and

so on. Finally, you must verify whether the

user owns the product he/she is trying

to update, i.e., that the product belongs

to that user and not another user (not to

mention that the product itself exists).

 Of course, you also need to validate

the updated values just as you would

when submitting via a normal browser-

based form. And if there are any errors,

just as you display error messages to the

user, you need to tell the user submitting

the web service that their update request

was not successful.

 What follows is a case study on web

services-enabling Averum Billing. It will

hopefully provide MXDJ readers with

an overview of the various issues we

encountered. Some of these problems are

specific to ColdFusion while others are

generic problems that apply regardless of

your development platform.

 There are 10 primary issues, which I

list below and will discuss:

1. File size limit

2. Session management

3. Redundant CFCs

4. Application scoped CFCs

5. Custom IDs vs. internal IDs

6. All fields are required

7. Returning queries

8. Boolean fields

9. Error messages

10. Debugging

1. File Size Limit

 For developers using Fusebox or other

methodologies where all pages are called

via index.cfm or some other file, it’s a nat-

ural preference to prefer that all web ser-

vices requests use the same ColdFusion

Component as well. Unfortunately, that

just ain’t gonna happen. Java has a

64k file size limit, which can quickly be

reached with a few functions and their

arguments.

 You can try moving all logic outside of

the component (which is recommended

anyway) but you will still hit the limit

eventually. Plus you will also find that the

CFRETURN tag must be in the CFC itself

and not an included file, so you will need

a variable to store the returned value.

 Bottom line: if you are truly web ser-

vices-enabling your application, you must

give up the dream of using the same CFC

for all web services functions. You’ll need

to use multiple CFCs. So you may as well

separate the functions into logical group-

ings – CFC1 and CFC2 are not exactly

intuitive.

2. Session Management

 If your application requires users to

log in, they’ll need to do so before access-

ing any data via web services as well.

Despite ColdFusion’s documentation,

managing sessions in web services is not

simply a matter of using CFAPPLICATION

or cookies. Normal browser-based ses-

sions based on cookies do not work. A

more creative solution is required.

 It’s possible that including CFID and

CFTOKEN in the URL when calling the web

service component would work, but we

didn’t try this. It’s not a standard practice

in web services for the URL to invoke a

web service to vary. That’s why you have

input variables. Moreover, the default

setting for a browser-based ColdFusion

session to timeout is 20 minutes. However,

our clients preferred a longer timeout

period. For Averum Billing, we chose 2

hours, which would have been dangerous

if storing those sessions in memory.

 As usual, the best way to resolve new

issues is to see how other sites have dealt

with them. After reviewing the web ser-

vices implementations of several other

popular sites, we choose to use a UUID

variable as the session ID, which can gen-

erally be assumed to be unique.

 After logging in with a username and

password (and in our case, a company

name as well), Averum Billing’s web ser-

vices login function returns a UUID, which

must then be submitted with each subse-

quent web services request. This authen-

ticates the user so that the username and

password do not need to be submitted in

each request.

 For additional security, Averum Billing

tracks the IP address used when logging

in. All subsequent web services requests

for that UUID must originate from the

same IP address. Otherwise the request is

rejected because the user isn’t logged in.

 Like any session, there is a need

to store “session” variables. However,

because we cannot store normal session

variables (between requests), we techni-

cally do not have a session and cannot

4 • 2005 MXDJ.COM • 39

store variables in the Session scope.

Instead, to simulate session variables, we

chose to add a WebServiceSession table

to our database that tracks the necessary

session information.

 While this limits the number and type

of session variables we can store, it was

the only scalable solution. We initially

implemented sessions using an applica-

tion-scoped structure where the structure

index was the UUID of the web services

session. The resulting value would also be

a structure to store the necessary session

variables. For instance:

<CFSET Application.webServiceSession[t

heUUID].userID = “1”>

 However, this method has an inherent

scalability problem. Adding a new session

or updating an existing session required

updating an application-scoped variable,

which in turn requires using CFLOCK to

ensure only one process is updating the

variable at a time. If you expect more

than a few customers to be accessing the

web services interface at the same time,

the constant locking of the application-

scoped variable becomes a major bottle-

neck.

 Finally, like any session, it must end

at some point either by logging out or

timing out. While we chose not to build a

“logout” web services function, a web ser-

vices session can time out due to inactiv-

ity, just like a browser session. However,

whereas CFAPPLICATION does this for you

automatically, we had to implement this

capability ourselves.

 To do this, we created a “session” vari-

able that stores the last date/time the

“user” submitted a web services request.

This is used to determine whether the

web services session should be “timed

out” due to inactivity, which is checked

with each request. We chose to time

out sessions after 2 hours of inactivity.

With each web services request, we first

validate the UUID to ensure it is an active

session and, if so, then compare the

current date/time with the last request

to determine whether the session has

“timed out.” To actually delete the

timed-out sessions, we set up a sched-

uled script that deletes all web services

“sessions”, i.e., the rows in the database

where the last request was more than 2

hours ago.

3. Redundant CFCs

 While some developers prefer to store

all components in a single directory,

we chose to store each component in

the same directory with its associated

functionality. But this would require that

customers refer to the web services com-

ponents in a whole bunch of different

directories. Of course, it would be more

convenient if all components accessed via

web services were in the same directory.

 While it initially seems ludicrous to

have redundant components, it was actu-

ally necessary anyway. The web services

components have the same name, but

with a “WS” prefix. Most web services

functions in Averum Billing have the

same function (method) name as their

associated non-web services function.

 For many reasons, the normal CFC

function and the web services version

of that function accept a different list of

arguments. We will go into more detail

later about some of the reasons for this,

including custom IDs, searching, updat-

ing, and boolean fields. Of course, the

most obvious example is the UUID that

must be passed in to validate the session.

 Another simple reason is that Averum

Billing contains fields that are used inter-

nally, but which are not specified directly

by the client. In general, our client is not

even aware the fields exist. These fields

exist as arguments in the normal CFC

function, but not in the web services CFC

function. While Java does allow you to

have multiple functions with the same

name but with different arguments,

ColdFusion does not.

4. Application Scoped CFCs

 Once we created our first web services

component, a funny thing happened

when we tested it. For simplicity, we used

CFINVOKE to call the component just as

we would any other. We assumed there

was no difference when calling the func-

tion as a component versus calling it as

a web service. In other words, we figured

“<CFINVOKE Component=” worked the

same as “<CFINVOKE WebsService=”.

 As you have probably guessed by

now, this was not the case. Many of our

components access functions in other

components. In those instances, we

simply used “CFINVOKE Component=”

to access the other component. When

calling a component that is not in the

same directory, the “Component=” value

must start from the root public directory

of your site, which requires setting up a

mapping in the ColdFusion Administrator.

This is fairly annoying, and we would

have preferred that CFMX be more intel-

ligent in this respect rather than imple-

menting this in a normal Java fashion.

 This method of calling a function in

another component works fine if the

component is called via “<CFINVOKE

Component=” but, for some strange rea-

son, doesn’t work when called as a web

service. Yes, it’s the exact same function

that is being called, but CF is evidently

a bit more cranky when called as a web

service. So we found that the only way to

access a function in another component

when called via a web service is to store

that component in the Application scope.

 It’s a good idea to store commonly-

used components in the Application scope

for performance reasons. So we were con-

sidering doing this anyway, at least for the

more heavily-used components. But the

web services requirement did not give us

much choice in the matter.

 The only downside of storing com-

ponents in the application scope is that

we then had to remember to “update”

the component value in the application

scope whenever that CFC file is updated.

To do this, we added a simple link in our

admin interface that can reset these val-

ues when necessary.

 The components that are called as

web services are not stored in the appli-

cation scope though because they are

never called by other components. They

are only called directly by clients when

accessing a web services function. So

storing them in the application scope

provides no benefit.

 On a random note, you will also find

that if you update a web services CFC,

ColdFusion will not recognize the chang-

es in the updated CFC until you restart

ColdFusion. It is possible it may recognize

the changes after a certain amount of

time, but we have not been willing to

wait around long enough to find out.

 We also use several functions that are

written in CFSCRIPT. Many of these func-

tions are also stored in the application

scope since ColdFusion gets cranky about

accessing functions via cached compo-

nents. Before including the ColdFusion file

that defines the function, you must first

40 • MXDJ.COM 4 • 2005

check whether the function already exists.

If it does exist and you try to define a func-

tion with the same name (even if it’s the

same function) ColdFusion returns an error.

Doing a check in the file that defines the

function is too late – ColdFusion returns an

error even if the CFSCRIPT is within a CFIF

statement that says to only execute the

CFSCRIPT if the function does not exist.

 A final note about storing components

in the application scope (or any persis-

tent scope actually). Any variables stored

using the “Variables” scope in a persistent

component are stored persistently as well.

While the ColdFusion documentation does

warn you about this, it did not occur to us.

As you know, you must use the “var” com-

mand when creating a temporary variable

in a component. The complication is when

a web service mirrors the functionality of

a non-component based browser feature,

where a persistent Variables scope is not

a problem. So while we initially thought it

was good habit to use the Variables scope

instead of leaving a variable un-scoped, it

came back to haunt us as we had to de-

scope many variables that were accessed

via a web service. Plus we had to use “var”

in our web services CFCs to create a tem-

porary variable.

5. Custom IDs vs. Internal IDs

 Now that we have dealt with the

basics of implementing web services, we

can deal with the specifics of the actual

web services functions and how your cus-

tomers will use them. Averum Billing has

a custom ID field for each item so that our

clients can specify their own primary key

values rather than using the primary key

assigned automatically by Averum Billing.

 For instance, when a new product is

created, the productID is assigned automat-

ically by the database. This number gener-

ally has no meaning to our client since they

have their own productID already for that

product. By using the custom ID, a field we

creatively named productID_custom, they

can refer to the product in Averum Billing

using the same ID they use in their own

system. Whereas the productID is an inte-

ger field, the productID_custom is a varchar

(text string) field so that clients can enter

any value they want.

 When specifying the productID via

web services, our client can specify

either our internal productID or their

productID_custom. But the web services

function must know which ID they are

specifying. There are several ways this can

be achieved:

a. Having both productID and produc-

tID_custom fields as arguments in the

web services function, where produc-

tID is numeric and productID_custom

is string. Then if the productID_custom

is not blank and productID is 0, this

means they are using the productID_

custom value. However, this method

is not explicit and the client could

accidentally specify values for both

fields, in which case it is unclear which

field to use. Plus, in some functions,

it may be possible to specify multiple

productID’s in a comma-delimited list,

or multiple productID_custom’s.

b. To ensure it is explicit whether to use

the productID or productID_custom,

instead of having both productID

and productID_custom fields, we can

instead have a single productID field

and then add an argument where

the client can specify which version

to use. We named this field “useCus-

tomIDFieldList”. The default is to use

the productID. To specify that the

productID_custom should be used

instead, just enter “productID” for the

“useCustomIDFieldList” value. If there

are other arguments in the function for

which the custom ID may be used, just

enter that field name in useCustomID-

FieldList, which is a comma-delimited

list of fields for which the custom ID

should be used. This method works

great, except that it still is not explicit

whether to use the productID or pro-

ductID_custom field if there is only

one. Plus if the productID argument is

a string, that violates the web services

concept of a self-defining function.

c. The final method is to use the useCus-

tomIDFieldList argument and also have

both productID and productID_custom

arguments. This is the most explicit

method and maintains the field type

integrity (except where the productID

may be a comma-delimited list, in

which case it must be of type string

instead of numeric).

6. All Fields Are Required

 One of the annoying things about

web services is that all arguments are

Advertising Index

 Advertiser URL Phone Page

 CFDynamics www.cfdynamics.com 866-233-9626 3

 EV1 Servers www.ev1servers.net 800-504-SURF 6

 HostMySite.com www.hostmysite.com/mxdj 877-248-4678 5

 InterAKT http://interaktonline.com/go/MXKollection/ 11

 Intermedia.net www.intermedia.net 888-379-7729 21

 Macromedia www.macromedia.com/go/video5 415-252-2000 2

 Macromedia WPS www.macromedia.com/go/webupdate 415-252-2000 52

 Macromedia Training www.macromedia.com/certification 415-252-2000 25

 MX Developer’s Journal www.sys-con.com/mx/subscription.cfm 888-303-5282 43

 PaperThin www.paperthin.com 800-940-3087 13

 Seapine Software www.seapine.com/webdev 888-683-6456 5

 CFUNITED www.cfunited.com 301-424-3903 19

 ColdFusion Developer’s Journal www.sys-con.com/cfdj/subscription.cfm 888-303-5282 45

 Web Services Edge 2005 www.sys-con.com/Edge2005 201-802-3066 31

4 • 2005 MXDJ.COM • 41

required, whether you need to specify

a value for that argument or not. Unlike

accessing normal functions in ColdFusion,

the Required clause in the CFARGUMENT

tag is ignored for web services. All argu-

ments are required. Period.

 While this does not seem like a big

deal, it is actually quite annoying, espe-

cially if the web services function is for

searching or updating. When searching,

there are dozens of search criteria you

might use to filter the results. Because all

arguments are required though, you need

a way to specify which arguments should

be used for searching. In Averum Billing,

we have solved this problem with an

argument named “searchFieldList”. This is

a comma-delimited list of the arguments

to use for searching.

 Similarly, when updating an item,

for instance a product, you may want

to update the product name but not

the price. Again, you do not want to

be forced to update all product fields if

you only want to update the name. That

would require you to know the current

value of the product fields you do not

want to update. But we certainly do not

want to create a separate web services

function for each product field so you can

only update that field. Instead, we added

an argument named “updateFieldList”

which is a comma-delimited list of the

fields to update.

 A somewhat-related side effect of the

required field problem is Averum Billing’s

support for custom fields. Averum Billing

allows clients to create their own custom

fields for users, companies, products, etc.

But it is not possible to submit arguments

to web services that are not listed in the

function. Java may support such “over-

loading” but ColdFusion does not. And it

certainly violates the self-describing spirit

of web services standards.

 For customers to specify custom fields

via web services, we instead have an argu-

ment named “customField” where they can

enter the custom field values in an XML

string where <customField> is the main

tag and the individual custom field tags

are the custom fields names as defined

when they created the custom field.

7. Returning Queries

 Like all functions in CFCs, web services

functions specify the field type that is

returned. When the return type is a query,

you need to consider that queries are

treated differently in ColdFusion than in

other languages. They are generally treated

as a dual-index array whereas ColdFusion

essentially treats queries as a structure/

array combination. For instance, to access

a particular row in a ColdFusion query, you

can use:

queryName.fieldName[row]

 But when the query is returned

via web services to another language,

instead of “fieldName” being the index,

the index is a number. But the number

must correspond to the field name, and

the client requesting the query must

know which index number corresponds

to the field name. Fortunately, ColdFusion

seems to be consistent in how the field

names are ordered – they match the

order in which the fields are listed in the

SELECT clause of the query.

 In your documentation, simply list

the returned fields in the order in which

they are selected. This provides a minor

issue if the query returns internal fields

that are not listed in the web services

documentation. You cannot hide this

fact since it is easy enough to determine

the array length. So you either have

to specify that the query not return

these internal fields when the query is

requested for web services, or just have

some fun and let your client guess what

the unlisted field is.

8. Boolean Fields

 Boolean fields are generally speci-

fied as 0/1 or True/False. They presented

a minor challenge in our web services

interface. Internally, our components

used numeric field types for Boolean

fields that are stored as bit fields in the

database. We could have specified a

numeric field type for our web services as

well, but in keeping with the self-describ-

ing nature of web services, we preferred

the argument type to accurately reflect

the data type.

 This presented two issues though.

First, since our internal components and

code use the numeric value, we cre-

ated a simple function to convert the

Boolean value to a 0 or 1. Second, there

are instances where the Boolean value

may be null, e.g., a nullable bit field. Well,

it seems that null is not a valid Boolean

value and the web service will return

an error if you submit a blank value for

a Boolean field. This is very annoying.

In these instances, the data type for the

“Boolean” argument must instead be a

string, which can be blank.

 On a side note, the MySQL database

does not seem to support bit fields. So we

used a tinyint field instead. The alternative

was to use a varchar field of size 1, but we

preferred to stick with a numeric field.

 On a complete tangent, we also

learned the hard way that in ColdFusion

MX, if your query returns a bit field,

ColdFusion will display the value as a 0

or 1. However, if you use ColdFusion’s

ValueList function to return a list of all

values in the query for a bit field, for

some annoying reason, ColdFusion

converts the 0’s to False’s and the 1’s to

True’s.

9. Error Messages

 When a user submits a form, you vali-

date the field values and, if there are any

mistakes, you display the error messages

and re-display the form. This is slightly

more difficult in web services, which are

generally submitted by a server and thus

no one is there to read the error mes-

sages. More importantly, each web ser-

“We should warn you that debugging
your web services is more complicated

than debugging normal ColdFusion code”

42 • MXDJ.COM 4 • 2005

vice function must specify the data type

of the return value. If the function returns

a numeric value or a query, clearly you

cannot return an error message as a text

string.

 In .NET, I believe it is possible to create

an exception where the returned value

is not of the type specified. But trying to

do this in ColdFusion will cause an excep-

tion error. (Unfortunately, ColdFusion also

returns an error if you call a web services

function without all of the arguments or

if the argument value does not match

the field type. This is incredibly annoy-

ing because there is no way to catch this

error via CFTRY.)

 There are two issues regarding how to

handle error messages:

1) how to tell the client submitting the

request that there was a problem with

their request, but in a way that their

server can understand in an auto-

mated manner;

2) when clients are initially setting up

the web services on their end, how to

let them access the error messages so

they know why the request was unsuc-

cessful.

 For the server, our documentation

lists the value returned if the request is

not successful. For a numeric return type,

we return –1. For a string, we return a

blank value. For a date field, we return

January 1, 1970 at 12:00 AM. For a query,

we return a blank query with a single

field named “error”. (If the user does not

have permission, we do not want to

return a blank query with the actual field

names. Granted they can get this from

our documentation, but we still need

to differentiate between an error and a

blank results set.)

 Now that the server knows the

request was rejected, the programmer

might want to know why. In the “session”

variables for each web services login ses-

sion, Averum Billing stores the last error

message generated for that session. We

could have stored the last error message

generated for each web services function

or perhaps the last 10 error messages, but

we determined that would be a waste of

storage.

 There are many types of error mes-

sages, including:

• The user’s web services session has

timed out (or never existed)

• The user does not have permission for

the requested function

• The client does not have permission

for the requested item, e.g., the prod-

uct may belong to a different Averum

Billing client.

• Form validation issues

10. Debugging

 Finally, on the topic of error messages,

we should warn you that debugging your

web services is more complicated than

debugging normal ColdFusion code. The

error messages generated by ColdFusion

are often useless and misleading.

Checking the ColdFusion error log may

help, but it is generally the same non-

descriptive error message.

 There are several ways to debug your

web services code. One way is to call the

function as a normal component instead

of a web service, but that’s not always

useful if the error is web services-spe-

cific.

 Another method is to use CFTRY

within the code where the CFCATCH

clause includes a CFMAIL tag to email

the error message to you or a CFFILE tag

to write/append the error message to a

text file. Of course, our experience seems

to suggest that ColdFusion ignores the

CFCATCH code unless it is within a file

that is not included directly by the CFC

itself, i.e., it must be at least 2 files down

from the component.

 Finally, like other code, you can walk

through the code and comment out parts

that may be causing errors, and then

gradually un-comment the code to find

the error. When doing this, just make sure

there’s still a return value specified for the

function.

 If you’re truly stuck and are totally

frustrated, we recommend inserting

a bunch of CFFILE tags that append a

number or other text to a file, where

each successive CFFILE increments the

number. This is the quickest way to get

feedback about where the error is occur-

ing. Unfortunately, this method does

not work well if the error is in the CFC

itself since ColdFusion evidently caches

any functions with remote access and

updates its cache only when ColdFusion

is restarted. (This was mentioned in #4

above.)

 One interesting fact we learned

the hard way is about the function

QuerySetCell. Even if setting the value

to an integer, when listing the values

in a query using ValueList, ColdFusion

returns the value with a single decimal

point. The only way to resolve this was

to set the value using the ToString func-

tion around the actual integer value.

ValueList also converts bit fields from 0/1

to True/False.

 We also ran into a problem with a

query that was looped thru via CFLOOP

Query=””. The variables within the query

were properly-scoped using “queryName.

fieldName”, but the query was returning

junk data. Using ValueList confirmed that

the query was correct. Oddly, the solution

was to remove the “queryName.” in the

CFLOOP.

 Finally, for temporary values that will

be used in your function, you should

create the variable using “<CFSET var >”.

However, this does not apply to values

that will be returned via a CFINVOKE tag

when accessing another function. The

“var” value will actually take precedence

over the returned value, including for

queries.

Summary and Disclaimer
 This article was intended to help

ColdFusion developers web-ser-

vices enable their CFMX application.

It recounts the issues encountered

by Averum, Inc. while web services-

enabling Averum Billing, Averum’s billing

system for Application Service Providers

(ASPs).

 We do not suggest the methods used

by Averum are the only way or best way

to implement web services throughout

your application. However, the primary

goal of this article was to make you aware

of the various issues we encountered,

share our solutions, and stimulate debate

among the ColdFusion community about

best practices for web services-enabling

your application.

Steven Rubenstein is founder and CEO of

Averum, which develops billing

solutions for ASPs and the first-ever prod-

uct to reconcile credit card

transactions with your bank account. He

has been programming with ColdFusion

since 1997. Before Averum, Steven found-

ed an e-finance company and Emaze

Software, which developed auction soft-

ware. srubenstein@averum.com

44 • MXDJ.COM 4 • 2005

ecently in a Shockwave3D proj-

ect, I had some problems with

the modelsUnderRay command.

More precisely, modelsUnderRay seemed

to have some problems of its own.

Occasionally it just didn’t give the correct

result, it would miss a model somehow.

In the particular application I was build-

ing (a landscape that let the user’s drive

a car around on the surface), this was

dramatic because the when modelsUn-

derRay failed, the car fell through the

world. At first I started to develop little

stop-gap bits of code that ensured that

the built-in functions would work. And

then it occurred to me, why not just write

my own?

 So in my application, I was firing a ray

‘down’ from the position of the car, and

intersecting the land, and then moving

the car ‘up’ so that it would ride on the

surface. I was also orienting the car to the

normal of the triangle that it was on top

of. This is shown in Figure 1.

 So as you can see from the diagram,

missing the landscape would have rather

drastic consequences. Additionally, in

doing it myself, I was able to get not only

the normal from the original triangle,

but the blended normal that weights the

three disparate normal at the vertices

of the triangle, which allows for a much

smoother motion across the surface.

The desired “smooth normal” is shown in

Figure 2.

 So I needed a way to fire a ray at the

landscape, see where it hit, and get the

resulting normal vector. The code for my

collision detection routine is generalized

to the code in Listing 1 (which unlike my

terrain example uses ALL of the objects

in the world, in the same way that model-

sUnderRay does). Note also that to debug

this I used my ‘Visual Debug Lines’ that

I presented in a previous MXDJ column

(http://mxdj.sys-con.com/read/47857.

htm).

 The true “workhorse” of this routine

is the ghTriangleRayCollision routine,

that performs the magic of ray/triangle

collision detection. This routine is based

on an algorithm that I found at the

SoftSurfer graphics site [see References,

item1#], and that has been published sev-

eral times in various places. A competing

algorithm that could also be used would

be the Akenine-Moller algorithm, which

is presented in [see References, item #2].

The code for ghTriangleRayCollision is

presented in Listing 2.

 Finally, I wanted a way to average the

normals of the triangle I hit, and get the

normal of the exact point, or texel, within

the triangle, weighted from the three

triangle vertices. So I modified the code

in Listing 1 to return not only the texture

coordinates, but the three normals for the

triangle that I hit. This is simply a matter

of reading them out of the mesh in the

same way the texture coordinates are

read. Once I had the normals, then I knew

the following information: the position of

the points of the triangle (aTriangleHit in

the returned array), the point of collision

(vHitPosition in the returned array), and

the normals at the vertices of the triangle

(aTriangleNormals). With these three

pieces of information I used a technique

called Barycentric Coordinates to aver-

age the normals across the triangle. The

Barycentric Coordinates are computed

and returned as a vector of weights in the

ghGetBarycentricCoords3D function in

Code Listing 3.

 The final application of the weights to

the original vectors occurs in the ghGet-

TexelValues handler, that takes an array

of values (the normals) and a vector that

represents the BaryCentric weights of

the point. The code for GetTexelValues is

shown in Listing 4.

 Using these methods, I rolled my

own collision detection that was far

more accurate than the modelsUnder-

Ray command that exists in the 3D

Xtra. It will detect backfacing collisions,

will not return a collision when the ray

intersects a model’s bounding sphere

but not the model, and is generally

more precise around the edges of indi-

vidual faces. Additionally, by adding

some averaging methods, I was able to

more smoothly interpolate across the

surface of the triangle, rather than have

sharp transitions between the normals

of two adjoining triangles. This made

for a much smoother terrain-following

algorithm, without the overhead of

constantly interpolating between the

last and current face. Hopefully you too

will find these functions a helpful addi-

tion to your toolbox in developing your

own 3D worlds.

References:
• Sunday, Dan. “Intersection of Rays,

Segments, Planes and Triangles in 3D.”

The SoftSurfer Graphics Algorithms

Collection. Available Online: http://

www.softsurfer.com/Archive/algo-

rithm_0105/algorithm_0105.htm

• Akenine-Moller, Thomas, and Eric Haines.

Real-Time Rendering. 2nd Edition. A. K.

Peters. Natick, Massachusetts, 2002.

Andrew M. Phelps is in the Information

Technology Department at the Rochester

Institute of Technology in Rochester, NY

(http://andysgi.rit.edu/). amp5315@rit.edu

3D

 One From the Vault: How I Rolled
My Own Collision Detection

A helpful addition to your toolbox
by andrew m. phelps

r

46 • MXDJ.COM 4 • 2005

li
st

in
g

 1
fi

g
u

re
 1

fi
g

u
re

 2

--

--TraceRayOrSegment3D

--

--Purpose: Traces a ray through the 3D world and returns

--either no collision, or a collision with an object.

--Generally used for pt to light or pt to reflected point

--calculations. Returns an array: the first element

--is an integer: 0=no collision, 1= collision, the second

--element of which is a vector describing the point hit,

--the third is an array of the triangle hit, the forth is

--an array of texture coordinates at the hit location, and

--the final value is a reference to the model that was hit.

--

--a_3dWorld -- a 3D world in which to trace

--a_mObstacles --a list of models that are valid obstacles

--a_aOwnTri --the triangle the ray is cast from (ignored)

--a_vStartPos --vector starting position of the ray/segment

--a_vDir --vector direction of the ray/segment

--a_vEndPos --end point of the segment (use int 0 for ray)

--a_bQuickCheck --whether to use ModelsUnderRay for a quick

--look at whether or not we hit a model (ignored backfacing

--collision and uses bounding sphere -- non accurate !!!!)

--a_bReturnFirst --returns the first hit found if true,

--otherwise returns the hit guarenteed closest to the

--a_vStartPos vector in world space (a longer search)

--a_bVisualDebug --whether or not to use visual debug lines

--ONLY REQUIRED FOR DEBUG

--a_iX - X count of lumel in map

--a_iY - Y count of lumel in map

--a_iLC - which light pass this is

--a_shShader -- debug shader reference

--a_rgbColor1

--a_rgbColor2

--viscious HACKERY

--a_bReturnAll --return all hits along the vector

--returns:

--[TRUE/FALSE,vHitPosition,aTriangleHit,aTexCoords, mModel]

--

on ghTraceRayOrSegment3D a_3dWorld, a_mObstacles, \

 a_aOwnTri, a_vStartPos, a_vDir, a_vEndPos, a_bQuickCheck,\

 a_bReturnFirst, a_bVisualDebug, a_iX, a_iY, a_iLc, \

 a_shShader, a_mModel, a_rgbColor1, a_rgbColor2, \

 a_bReturnAll

 --use models under ray for a quick look at collision

 if a_bQuickCheck then

 plOptions = [#maxNumberOfModels: 1, #levelOfDetail: \

 #simple]

 aHitModels = a_3DWorld.modelsUnderRay(a_vStartPos, \

 a_vDir, plOptions)

 if aHitModels.count = 0 then return [false]

 end if

 --initialize flags

 bHitAFace = false

 vHitPosition = vector(0,0,0)

 aHitList = []

 --calculate ray end if non-segment

 if a_vEndPos = 0 then a_vEndPos = a_vStartPos + \

 (a_vDir * _global.g_fRayLengthCap)

 repeat with iObj = 1 to a_mObstacles.count

 repeat with iFace = 1 to a_mObstacles[iObj\

].meshDeform.face.count

 --get information about this face

 aIndicies = a_mObstacles[iObj\

].meshDeform.mesh[1\

].face[iFace]

 --get the verticies of this face

 vA = a_mObstacles[iObj\

].meshDeform.mesh[1\

].vertexList[aIndicies[1]]

 vB = a_mObstacles[iObj\

].meshDeform.mesh[1\

].vertexList[aIndicies[2]]

 vC = a_mObstacles[iObj\

].meshDeform.mesh[1\

].vertexList[aIndicies[3]]

 --convert this triangle to world space

 vP1 = a_mObstacles[iObj].getWorldTransform() * vA

 vP2 = a_mObstacles[iObj].getWorldTransform() * vB

 vP3 = a_mObstacles[iObj].getWorldTransform() * vC

 aTri = [vP1, vP2, vP3]

 if aTri <> a_aOwnTri then --dont collide with own face

 --check for collision using custom maths

 aTriCol = ghTriangleRayCollision([a_vStartPos, \

 a_vEndPos], aTri)

 if (aTriCol[1] = 1) then --hit something

 --set flags and store this triangle

 bHitAFace = true

 vHitPosition = aTriCol[2]

 aTriangleHit = aTri

 --get texture infos from this triangle

4 • 2005 MXDJ.COM • 47

 aUV1 = a_mObstacles[iObj\

].meshDeform.mesh[1\

].textureLayer[1\

].textureCoordinateList[\

 aIndicies[1]]

 aUV2 = a_mObstacles[iObj\

].meshDeform.mesh[1\

].textureLayer[1\

].textureCoordinateList[\

 aIndicies[2]]

 aUV3 = a_mObstacles[iObj\

].meshDeform.mesh[1\

].textureLayer[1\

].textureCoordinateList[\

 aIndicies[3]]

 aTexCoords = [aUV1, aUV2, aUV3]

 mModel = a_mObstacles[iObj]

 --debug marker

 if _global.g_bDebugMarkRayTriangleCollisions then

 put “HIT A TRIANGLE on model “ & mModel.name

 end if

 if a_bReturnFirst = true then

 --we are about to return, so debug this path

 --if debugging is on

 if a_bVisualDebug then

 sName = “connector “ & a_iX & a_iY & \

 a_iLC & iFace & a_mModel.name

 ghDebugRay(a_3dWorld, sName, a_rgbColor1, \

 a_rgbColor2, a_vStartPos, a_vEndPos, \

 a_shShader)

 end if

 --we hit something not ourselves, so return

 return [true, vHitPosition, aTriangleHit, \

 aTexCoords, mModel]

 else

 --store this hit in the list of all hits

 --along this ray for later determination

 --of the closest hit

 aHitList.add([true, vHitPosition, \

 aTriangleHit, aTexCoords, mModel])

 end if

 else

 --self face intersection or blank pass

 end if

 end if

 end repeat

 end repeat

 --debug this useless pass debugging is on

 if a_bVisualDebug then

 sName = “connector “ & a_iX & a_iY & a_iLC & iFace \

 & a_mModel.name

 ghDebugRay(a_3dWorld, sName, a_rgbColor1, a_rgbColor2, \

 a_vStartPos, a_vEndPos, a_shShader)

 end if

 --if we are storing all hits, calculate the closest one

 --and return it

 if a_bReturnFirst = false and a_bReturnAll = false then

 if aHitList.count > 1 then

 aClosest = aHitList[1]

 fDist = (a_vStartPos - aHitList[1][2]).magnitude

 repeat with iC = 2 to aHitList.count

 fNewDist = (a_vStartPos - \

 aHitList[iC][2]).magnitude

 if fNewDist < fDist then

 fDist = fNewDist

 aClosest = aHitList[iC]

 end if

 end repeat

 return aClosest

 else if aHitList.count = 1 then

 return aHitList[1]

 end if

 end if

 if a_bReturnAll = true then

 if aHitList.count >= 1 then

 --order the hitlist from closest

 --to farthest. total pain.

 aOrderedList = []

 repeat while aHitList.count > 0

 aClosest = aHitList[1]

 fDist = (a_vStartPos - aHitList[1][2]).magnitude

 iPos = 1

 repeat with iC = 2 to aHitList.count

 fNewDist = (a_vStartPos - \

 aHitList[iC][2]).magnitude

 if fNewDist < fDist then

 fDist = fNewDist

 iPos = iC

 aClosest = aHitList[iC]

 end if

 end repeat

 aOrderedList[aOrderedList.count+1] = aClosest

 aHitList.deleteAt(iPos)

 end repeat

 return aOrderedList

 else

 return [[false]]

 end if

 end if

 --return no collision

 return [false]

end ghTraceRayOrSegment3D

--

48 • MXDJ.COM 4 • 2005

listin
g

 4

li
st

in
g

 2

listin
g

 3

--

--GetTriangleRayCollision

--

--Purpose:

--a_aRay - an Array of 2 vectors, representing the start and

--end points of a ray in 3D space

--a_aTrangle - an array of vectors representing the

--points of the triangle in 3D world coordinates

--returns an array where the first element represents

--collision (1 if collide, 2, -1, or 0 if no collision) and

--the second element (if present) is the point of collision

--as a world-space vector

--

on ghTriangleRayCollision a_aRay, a_aTriangle

 --http://softsurfer.com/Archive/algorithm_0105/

 --algorithm_0105.htm#intersect_RayTriangle()

 --triangle vectors

 vU = a_aTriangle[2] - a_aTriangle[1]

 vV = a_aTriangle[3] - a_aTriangle[1]

 vN = ghGet3DTriangleFaceNormal(a_aTriangle)

 --test for degenerate triangle

 if (vN = vector(0,0,0)) then return [-1]

 --ray vectors

 vDir = a_aRay[2] - a_aRay[1]

 vW0 = a_aRay[1] - a_aTriangle[1]

 fA = -vN.dot(vW0)

 fB = vN.dot(vDir)

 if (abs(fB) < 0.00001) then --ray is parallel to triangle

 if (fA = 0) then

 return [2] --ray is on the triangle plane

 else

 return [0] --ray is disjoint from plane

 end if

 end if

 --get intersection point of ray with triangle plane

 fR = fA / fB

 if (fR < 0.0) then return [0]

 if (fR > 1.0) then return [0]

 --intersection point of ray and plane

 vI = a_aRay[1] + fR * vDir

 --is I inside T ??

 fUu = vU.dot(vU)

 fUv = vU.dot(vV)

 fVv = vV.dot(vV)

 vW = vI - a_aTriangle[1]

 fWu = vW.dot(vU)

 fWv = vW.dot(vV)

 fD = fUv * fUv - fUu * fVv

 --get and test parametric coordinates (s,t)

 fS = (fUv * fWv - fVv * fWu) / fD

 --I is outside T ?

 if (fS < 0.0) or (fS > 1.0) then return [0]

 fT = (fUv * fWu - fUu * fWv) / fD

 --I is outside T ?

 if (fT < 0.0) or ((fS + fT) > 1.0) then return [0]

 return [1, vI] -- I is in T

end ghTriangleRayCollision

--

--

--GetBarycentricCoordinates3D

--

--Purpose: Solves for barycentric coords given a 3D triangle

--and a vector/point within that triangle. Returns a non-

--normalized vector

--a_aTriPts - array of 3 vectors that form the triangle

--a_vP - point that is inside the triangle on on its plane

--

on ghGetBarycentricCoords3D a_aTriPts, a_vP

 fU = a_aTriPts[2] - a_aTriPts[1]

 fV = a_aTriPts[3] - a_aTriPts[1]

 fW = a_vP - a_aTriPts[1]

 fD = (power(fU.dot(fV), 2) - (fU.dot(fU))*(fV.dot(fV)))

 fS = ((fU.dot(fV))*(fw.dot(fV))- \

 (fV.dot(fV))*(fw.dot(fU))) / fD

 fT = ((fU.dot(fV))*(fw.dot(fU))- \

 (fU.dot(fU))*(fw.dot(fV))) / fD

 fW = fS*fU + fT*fV --unique if P lies within the plane

 fB0 = (1-fS-fT)

 fB1 = fS

 fB2 = fT

 vBaryC = vector(fB0, fB1, fB2)

 return vBaryC

end ghGetBarycentricCoords3D

--

--

--GetTexelValues

--

--Purpose:

--a_aValues - array of 2D points, 3D points, or normals that

--are representative of values at the 3 points of a

--triangle.

--a_a_Weights - barycentric coordinates of the point

--to solve for relative to vertex values

--

on ghGetTexelValues a_aValues, a_aWeights

 --compute X and Y averages based on barycentric coords

 fR1 = (a_aWeights[1]*a_aValues[1][1]) + \

 (a_aWeights[2]*a_aValues[2][1]) + \

 (a_aWeights[3]*a_aValues[3][1])

 fR2 = (a_aWeights[1]*a_aValues[1][2]) + \

 (a_aWeights[2]*a_aValues[2][2]) + \

 (a_aWeights[3]*a_aValues[3][2])

 --if there is a third value, then calculate it also

 if a_aValues[1].ilk() = #vector then

 fR3 = (a_aWeights[1]*a_aValues[1][3]) + \

 (a_aWeights[2]*a_aValues[2][3]) + \

 (a_aWeights[3]*a_aValues[3][3])

 --return a vector if 3D triangle

 vReturn = vector(fR1, fR2, fR3)

 return vReturn

 end if

 --reutrn 2D coord if 2D inputs

 aReturn = [fR1, fR2]

 return aReturn

end ghGetTexelValues

--

4 • 2005 MXDJ.COM • 49

Step into My Office
ur focus was to create a deeply

immersive and visually stimu-

lating Web site to represent

AgencyNet as a cutting-edge

interactive shop. After evaluat-

ing the objectives for our redesign, we

determined that providing users with a

first-hand look inside the day-to-day lives at

our agency was of the utmost importance.

We wanted to utilize the full capabilities of

the medium and create an innovative and

unique interactive experience that touched

the users' senses.

 I think we're all exceptionally proud of

the site as a whole: the unique concept, the

innovative creative and technical execu-

tion, the immersive visitor experience, and

the fun and creative approach to content

deployment. Most important, we achieved

– actually exceeded – all of the objectives

we set forth. www.agencynet.com

o

va
n

g
u

a
rd

50 • MXDJ.COM 4 • 2005

